Mon, 15 Nov 2021
15:45
Virtual

Hyperbolic 5-manifolds that fiber over the circle

Bruno Martelli
(Universita di Pisa)
Abstract

We show that the existence of hyperbolic manifolds fibering over the circle is not a phenomenon confined to dimension 3 by exhibiting some examples in dimension 5. More generally, there are hyperbolic manifolds with perfect circle-valued Morse functions in all dimensions $n\le 5$. As a consequence, there are hyperbolic groups with finite-type subgroups that are not hyperbolic.

The main tool is Bestvina - Brady theory enriched with a combinatorial game recently introduced by Jankiewicz, Norin and Wise. These are joint works with Battista, Italiano, and Migliorini.

Mon, 08 Nov 2021
15:45
Virtual

The first group cohomology and uniformly bounded representations of simple rank-one Lie groups

Shintaro Nishikawa
(University of Münster)
Abstract

Consider simple rank-one Lie groups $SO(n, 1)$, $SU(n, 1)$ and $Sp(n ,1)$ ($n>1$). They are the isometry groups of real, complex and quaternionic hyperbolic spaces respectively.

By a result of Kostant, the trivial representation of $Sp(n ,1)$ is isolated in the space of irreducible unitary representations on Hilbert spaces. That is, $Sp(n ,1)$ has Kazhdan’s property (T) which is equivalent to the vanishing of 1st cohomology of the group in all unitary representations. This is in contrast to the case of $SO(n ,1)$ and $SU(n ,1)$ where they have the Haagerup approximation property, a strong negation of property (T).

This dichotomy between $SO(n ,1)$, $SU(n ,1)$ and $Sp(n ,1)$ disappears when we consider so-called uniformly bounded representations on Hilbert spaces. By a result of Cowling in 1980’s, the trivial representation of $Sp(n ,1)$ is no longer isolated in the space of uniformly bounded representations. Moreover, there is a uniformly bounded representation of $Sp(n ,1)$ with non-zero first cohomology group.

The goal of this talk is to describe these facts.

Mon, 01 Nov 2021
15:45
Virtual

Peg problems

Joshua Greene
(Boston College)
Abstract

I will talk about joint work with Andrew Lobb related to Toeplitz's square peg problem, which asks whether every (continuous) Jordan curve in the Euclidean plane contains the vertices of a square. Specifically, we show that every smooth Jordan curve contains the vertices of a cyclic quadrilateral of any similarity class. I will describe the context for the result and its proof, which involves symplectic geometry in a surprising way.

Mon, 25 Oct 2021
15:45
Virtual

How do field theories detect the torsion in topological modular forms

Daniel Berwick Evans
(University of Illinois at Urbana-Champaign)
Abstract

Since the mid 1980s, there have been hints of a connection between 2-dimensional field theories and elliptic cohomology. This lead to Stolz and Teichner's conjectured geometric model for the universal elliptic cohomology theory of topological modular forms (TMF) for which cocycles are 2-dimensional (supersymmetric) field theories. Properties of these field theories lead to the expected integrality and modularity properties of classes in TMF. However, the abundant torsion in TMF has always been mysterious from the field theory point of view. In this talk, we will describe a map from 2-dimensional field theories to a cohomology theory that approximates TMF. This map affords a cocycle description of certain torsion classes. In particular, we will explain how a choice of anomaly cancelation for the supersymmetric sigma model with target $S^3$ determines a cocycle representative of the generator of $\pi_3(TMF)=\mathbb{Z}/24$.

Mon, 18 Oct 2021
15:45
Virtual

Embeddings into left-orderable simple groups

Arman Darbinyan
(Texas A&M)
Abstract

Topologically speaking, left-orderable countable groups are precisely those countable groups that embed into the group of orientation preserving homeomorphisms of the real line. A recent advancement in the theory of left-orderable groups is the discovery of finitely generated left-orderable simple groups by Hyde and Lodha. We will discuss a construction that extends this result by showing that every countable left-orderable group is a subgroup of such a group. We will also discuss some of the algebraic, geometric, and computability properties that this construction bears. The construction is based on novel topological and geometric methods that also will be discussed. The flexibility of the embedding method allows us to go beyond the class of left-orderable groups as well. Based on a joint work with Markus Steenbock.

Mon, 11 Oct 2021
15:45
L4

Leary–Minasyan groups and generalisations

Sam Hughes
(Oxford University)
Abstract

In this talk we will introduce Leary and Minasyan's CAT(0) but not biautomatic groups as lattices in a product of a Euclidean space and a tree.  We will then investigate properties of general lattices in that product space.  We will also consider a construction of lattices in a Salvetti complex for a right-angled Artin group and a Euclidean space.  Finally, if time permits we will also discuss a "hyperbolic Leary–Minasyan group" and some work in progress with Motiejus Valiunas towards an application.

Mon, 06 Dec 2021
14:15
L4

A non-existence result for balanced SU(3)-structures on cohomogeneity one manifolds

Izar Alonso Lorenzo
((Oxford University))
Abstract

The Hull--Strominger system is a system of non-linear PDEs on heterotic string theory involving a pair of Hermitian metrics $(g,h)$ on a six dimensional manifold $M$. One of these equations dictates the metric $g$ on $M$ to be conformally balanced. We will begin the talk by giving a description of the geometry of cohomogeneity one manifolds and SU(3)-structures. Then, we will look for solutions to the Hull--Strominger system in the cohomogeneity one setting. We show that a six-dimensional simply connected cohomogeneity one manifold under the almost effective action of a connected Lie group $G$ admits no $G$-invariant balanced non-Kähler SU(3)-structures. This is a joint work with F. Salvatore.

Thu, 14 Oct 2021

14:00 - 15:00
Virtual

What is the role of a neuron?

David Bau
(MIT)
Abstract

One of the great challenges of neural networks is to understand how they work.  For example: does a neuron encode a meaningful signal on its own?  Or is a neuron simply an undistinguished and arbitrary component of a feature vector space?  The tension between the neuron doctrine and the population coding hypothesis is one of the classical debates in neuroscience. It is a difficult debate to settle without an ability to monitor every individual neuron in the brain.

 

Within artificial neural networks we can examine every neuron. Beginning with the simple proposal that an individual neuron might represent one internal concept, we conduct studies relating deep network neurons to human-understandable concepts in a concrete, quantitative way: Which neurons? Which concepts? Are neurons more meaningful than an arbitrary feature basis? Do neurons play a causal role? We examine both simplified settings and state-of-the-art networks in which neurons learn how to represent meaningful objects within the data without explicit supervision.

 

Following this inquiry in computer vision leads us to insights about the computational structure of practical deep networks that enable several new applications, including semantic manipulation of objects in an image; understanding of the sparse logic of a classifier; and quick, selective editing of generalizable rules within a fully trained generative network.  It also presents an unanswered mathematical question: why is such disentanglement so pervasive?

 

In the talk, we challenge the notion that the internal calculations of a neural network must be hopelessly opaque. Instead, we propose to tear back the curtain and chart a path through the detailed structure of a deep network by which we can begin to understand its logic.

 

Subscribe to