Tue, 10 Mar 2020
14:00
L6

Cycles of length three and four in tournaments

Jonathan Noel
(Warwick)
Abstract

Given a tournament with $d{n \choose 3}$ cycles of length three, how many cycles of length four must there be? Linial and Morgenstern (2016) conjectured that the minimum is asymptotically attained by "blowing up" a transitive tournament and orienting the edges randomly within the parts. This is reminiscent of the tight examples for the famous Triangle and Clique Density Theorems of Razborov, Nikiforov and Reiher. We prove the conjecture for $d \geq \frac{1}{36}$ using spectral methods. We also show that the family of tight examples is more complex than expected and fully characterise it for $d \geq \frac{1}{16}$. Joint work with Timothy Chan, Andrzej Grzesik and Daniel Král'.

Tue, 03 Mar 2020
14:00
L6

Planar graphs: One graph to rule them all

Marthe Bonamy
(Bordeaux)
Abstract

Consider all planar graphs on n vertices. What is the smallest graph that contains them all as induced subgraphs? We provide an explicit construction of such a graph on $n^{4/3+o(1)}$ vertices, which improves upon the previous best upper bound of $n^{2+o(1)}$, obtained in 2007 by Gavoille and Labourel.

In this talk, we will gently introduce the audience to the notion of so-called universal graphs (graphs containing all graphs of a given family as induced subgraphs), and devote some time to a key lemma in the proof. That lemma comes from a recent breakthrough by Dujmovic et al. regarding the structure of planar graphs, and has already many interesting consequences - we hope the audience will be able to derive more. This is based on joint work with Cyril Gavoille and Michal Pilipczuk.

Mon, 17 Feb 2020

16:00 - 17:00
L4

Rough solutions of the $3$-D compressible Euler equations

Qian Wang
(Oxford)
Abstract

I will talk about my work arxiv:1911.05038. We prove the local-in-time well-posedness for the solution of the compressible Euler equations in $3$-D, for the Cauchy data of the velocity, density and vorticity $(v,\varrho, \omega) \in H^s\times H^s\times H^{s'}$, $2<s'<s$. The result extends the sharp result of Smith-Tataru and Wang, established in the irrotational case, i.e $ \omega=0$, which is known to be optimal for $s>2$. At the opposite extreme, in the incompressible case, i.e. with a constant density, the result is known to hold for $ \omega\in H^s$, $s>3/2$ and fails for $s\le 3/2$, see the work of Bourgain-Li. It is thus natural to conjecture that the optimal result should be $(v,\varrho, \omega) \in H^s\times H^s\times H^{s'}$, $s>2, \, s'>\frac{3}{2}$. We view our work here as an important step in proving the conjecture. The main difficulty in establishing sharp well-posedness results for general compressible Euler flow is due to the highly nontrivial interaction between the sound waves, governed by quasilinear wave equations, and vorticity which is transported by the flow. To overcome this difficulty, we separate the dispersive part of sound wave from the transported part, and gain regularity significantly by exploiting the nonlinear structure of the system and the geometric structures of the acoustic spacetime.
 

Mon, 17 Feb 2020
12:45
L3

Rademacher Expansions and the Spectrum of 2d CFT

Jinbeom Bae
(Oxford)
Abstract


I will describe work exploring the spectrum of two-dimensional unitary conformal field theories(CFT) with no extended chiral algebra and central charge larger than one. I will revisit a classical result from analytic number theory by Rademacher, which provides an exact formula for the Fourier coefficients of modular forms of non-positive weight. Generalizing this, I will explain how we employed Rademacher's idea to study the spectral density of two-dimensional CFT of our interest. The expression is given in terms of a Rademacher expansion, which converges for nonzero spin. The implications of our spectral density to the pure gravity in AdS3 will be discussed.

Subscribe to