Thu, 15 Jun 2017

16:00 - 17:30
C4

General Dynamic Term Structures under Default Risk

Claudio Fontana
(University Paris Diderot)
Abstract

We consider the problem of modelling the term structure of defaultable bonds, under minimal assumptions on the default time. In particular, we do not assume the existence of a default intensity and we therefore allow for the possibility of default at predictable times. It turns out that this requires the introduction of an additional term in the forward rate approach by Heath, Jarrow and Morton (1992). This term is driven by a random measure encoding information about those times where default can happen with positive probability.  In this framework, we  derive necessary and sufficient conditions for a reference probability measure to be a local martingale measure for the large financial market of credit risky bonds, also considering general recovery schemes. This is based on joint work with Thorsten Schmidt.

Thu, 08 Jun 2017

16:00 - 17:30
L2

LSM Reloaded - Differentiate xVA on your iPad Mini

Antoine Savine
(Danske Bank)
Abstract

This document reviews the so called least square methodology (LSM) and its application for the valuation and risk of callable exotics and regulatory value adjustments (xVA). We derive valuation algorithms for xVA, both with or without collateral, that are particularly accurate, efficient and practical. These algorithms are based on a reformulation of xVA, designed by Jesper Andreasen and implemented in Danske Bank's award winning systems, that hasn't been previously published in full. We then investigate the matter of risk sensitivities, in the context of Algorithmic Automated Differentiation (AAD). A rather recent addition to the financial mathematics toolbox, AAD is presently generally acknowledged as a vastly superior alternative to the classical estimation of risk sensitivities through finite differences, and the only practical means for the calculation of the large number of sensitivities in the context of xVA. The theory and implementation of AAD, the related check-pointing techniques, and their application to Monte-Carlo simulations are explained in numerous textbooks and articles, including Giles and Glasserman's pioneering Smoking Adjoints. We expose an extension to LSM, and, in particular, we derive an original algorithm that resolves the matters of memory consumption and efficiency in differentiating simulations together with the LSM step.

Thu, 01 Jun 2017

16:00 - 17:30
L4

Markov Bridges: SDE representation

Albina Danilova
(London School of Economics)
Abstract

[[{"fid":"47873","view_mode":"default","fields":{"format":"default"},"type":"media","attributes":{"class":"file media-element file-default"},"link_text":"AD abstract.pdf"}]]

Thu, 18 May 2017

16:00 - 17:30
L4

Financial Asset Price Bubbles under Model Uncertainty

Francesca Biagini
(LMU Munich)
Abstract

We  study  the  concept  of   financial  bubble  under model uncertainty.
We suppose the agent to be endowed with a family Q of local martingale measures for  the  underlying  discounted  asset  price. The priors are allowed to be mutually singular to each other.
One fundamental issue is the definition of a well-posed concept of robust fundamental value of a given  financial asset.
Since in this setting we have no linear pricing system, we choose to describe robust fundamental values through superreplication prices.
To this purpose, we investigate a dynamic version of robust superreplication, which we use
to  introduce  the  notions  of  bubble  and  robust  fundamental  value  in  a  consistent way with the existing literature in the classical case of one prior.

This talk is based on the works [1] and [2].

[1] Biagini, F. , Föllmer, H. and Nedelcu, S. Shifting martingale measures
and the slow birth of a bubble as a submartingale, Finance and
Stochastics: Volume 18, Issue 2, Page 297-326, 2014.


[2] Biagini, F., Mancin, J.,
Financial Asset Price Bubbles under Model 
Uncertainty, Preprint, 2016.

Thu, 11 May 2017

16:00 - 17:30
L4

Stability of Radner Equilibria with Respect to Small Frictions

Martin Herdegen
(Warwick)
Abstract


We study risk-sharing equilibria with trading subject to small proportional transaction costs. We show that the frictionless equilibrium prices also form an "asymptotic equilibrium" in the small-cost limit. To wit, there exist asymptotically optimal policies for all agents and a split of the trading cost according to their risk aversions for which the frictionless equilibrium prices still clear the market. Starting from a frictionless equilibrium, this allows to study the interplay of volatility, liquidity, and trading volume.
(This is joint work with Johannes Muhle-Karbe, University of Michigan.)
 

Thu, 04 May 2017

16:00 - 17:30
L4

Short-time near-the-money skew in rough fractional stochastic volatility models

Blanka Horvath
(Imperial)
Abstract

We consider rough stochastic volatility models where the driving noise of volatility has fractional scaling, in the “rough” regime of Hurst pa- rameter H < 1/2. This regime recently attracted a lot of attention both from the statistical and option pricing point of view. With focus on the latter, we sharpen the large deviation results of Forde-Zhang (2017) in a way that allows us to zoom-in around the money while maintaining full analytical tractability. More precisely, this amounts to proving higher order moderate deviation es- timates, only recently introduced in the option pricing context. This in turn allows us to push the applicability range of known at-the-money skew approxi- mation formulae from CLT type log-moneyness deviations of order t1/2 (recent works of Alo`s, Le ́on & Vives and Fukasawa) to the wider moderate deviations regime.

This is work in collaboration with C. Bayer, P. Friz, A. Gulsashvili and B. Stemper

Thu, 27 Apr 2017

16:00 - 17:30
L4

On numerical approximation algorithms for high-dimensional nonlinear PDEs, SDEs and FBSDEs

Arnulf Jentzen
(ETH Zuerich)
Abstract

In this lecture I intend to review a few selected recent results on numerical approximations for high-dimensional nonlinear parabolic partial differential equations (PDEs), nonlinear stochastic ordinary differential equations (SDEs), and high-dimensional nonlinear forward-backward stochastic ordinary differential equations (FBSDEs). Such equations are key ingredients in a number of pricing models that are day after day used in the financial engineering industry to estimate prices of financial derivatives. The lecture includes content on lower and upper error bounds, on strong and weak convergence rates, on Cox-Ingersoll-Ross (CIR) processes, on the Heston model, as well as on nonlinear pricing models for financial derivatives. We illustrate our results by several numerical simulations and we also calibrate some of the considered derivative pricing models to real exchange market prices of financial derivatives on the stocks in the American Standard & Poor's 500 (S&P 500) stock market index.

Thu, 02 Mar 2017
11:00
C5

A New Technique for Definability in Function Fields.

Philip Dittmann
(Oxford)
Abstract


Generalising previous definability results in global fields using
quaternion algebras, I will present a technique for first-order
definitions in finite extensions of Q(t). Applications include partial
answers to Pop's question on Isomorphism versus Elementary Equivalence,
and some results on Anscombe's and Fehm's notion of embedded residue.

Wed, 08 Mar 2017

11:00 - 12:30
N3.12

Varieties of groups

Giles Gardem
(University of Oxford)
Abstract

A variety of groups is an equationally defined class of groups, namely the class of groups in which each of a set of "laws" (or "identical relations") holds. Examples include the abelian groups (defined by the law $xy = yx$), the groups of exponent dividing $d$ (defined by the law $x^d$), the nilpotent groups of class at most some fixed integer, and the solvable groups of derived length at most some fixed integer. This talk will give an introduction to varieties of groups, and then conclude with recent work on determining for certain varieties whether, for fixed coprime $m$ and $n$, a group $G$ is in the variety if and only if the power subgroups $G^m$ and $G^n$ (generated by the $m$-th and $n$-th powers) are in the variety.

Subscribe to