On the Ramdas layer
Abstract
On calm clear nights a minimum in air temperature can occur just above the ground at heights of order 0.5m or less. This is contrary to the conventional belief that ground is the point of minimum. This feature is paradoxical as an apparent unstable layer (the height below the point of minimum) sustains itself for several hours. This was first reported from India by Ramdas and his coworkers in 1932 and was disbelieved initially and attributed to flawed thermometers. We trace its history, acceptance and present a mathematical model in the form of a PDE that simulates this phenomenon.
Robin Wilson's entire history of mathematics in one hour, as illustrated by around 300 postage stamps featuring mathematics and mathematicians from across the world.
From Euclid to Euler, from Pythagoras to Poincaré, and from Fibonacci to the Fields Medals, all are featured in attractive, charming and sometimes bizarre stamps.
Recent Advances in Optimization Methods for Machine Learning
Abstract
Optimization methods for large-scale machine learning must confront a number of challenges that are unique to this discipline. In addition to being scalable, parallelizable and capable of handling nonlinearity (even non-convexity), they must also be good learning algorithms. These challenges have spurred a great amount of research that I will review, paying particular attention to variance reduction methods. I will propose a new algorithm of this kind and illustrate its performance on text and image classification problems.
Completely Positive Relaxations of Quadratically Constrained Quadratic Programs
Abstract
There is a well established body of research on quadratic optimization problems based on reformulations of the original problem as a conic program over the cone of completely positive matrices, or its conic dual, the cone of copositive matrices. As a result of this reformulation approach, novel solution schemes for quadratic polynomial optimization problems have been designed by drawing on conic programming tools, and the extensively studied cones of completely positive and of copositive matrices. In particular, this approach has been applied to address key combinatorial optimization problems. Along this line of research, we consider quadratically constrained quadratic programs and provide sufficient and necessary conditions for
this type of problems to be reformulated as a conic program over the cone of completely positive matrices. Thus, recent related results for quadratic problems can be further strengthened. Moreover, these results can be generalized to optimization problems involving higher order polynomias.
The Most Minimal Seed for the Onset of Shear Turbulence
Abstract
A key question to develop our understanding of turbulence in shear flows is: what is the smallest perturbation to the laminar flow that causes a transition to turbulence, and how does this change with the Reynolds number, R? Finding this so-called ``minimal seed'' is as yet unachievable in direct numerical simulations of the Navier-Stokes equations. We search for the minimal seed in a low-dimensional model analogue to the full Navier-Stokes in plane sinusoidal flow, developed by Waleffe (1997). A previous such calculation found the minimal seed as the least distance (energy norm) from the origin (laminar flow) to the basin of attraction of another fixed point (turbulent attractor). However, using a non-linear optimization technique, we found an internal boundary of the basin of attraction of the origin that separates flows which directly relaminarize from flows which undergo transient turbulence. It is this boundary which contains the minimal seed, and we find it to be smaller than the previously calculated minimal seed. We present results over a range of Reynolds numbers up to 2000 and find an R^{-1} scaling law fits reasonably well. We propose a new scaling law which asymptotes to R^{-1} for large R but, using some additional information, matches the minimal seed scaling better at low R.