On the class S origin of spindle solutions
Bomans, P Couzens, C Journal of High Energy Physics volume 2024 issue 10 (03 Oct 2024)
Tue, 04 Mar 2025
16:00
C3

Connes' rigidity conjecture for groups with infinite center

Adriana Fernández I Quero
(University of Iowa)
Abstract

We propose a natural version of Connes' Rigidity Conjecture (1982) that involves property (T) groups with infinite centre. Using methods at the rich intersection between von Neumann algebras and geometric group theory, we identify several instances where this conjecture holds. This is joint work with Ionut Chifan, Denis Osin, and Hui Tan.

Tue, 12 Nov 2024

13:00 - 14:00
L3

Mathematrix: Short Talks by PhD Students

Abstract

Several PhD students from the department will give short 5 minute talks on their research. This is also targeted at undergraduates interested in doing PhDs .

Tue, 15 Oct 2024

13:00 - 14:00
N4.01

Mathematrix: Meet and Greet

Abstract

Come along for free Pizza and to hear about the Mathematrix events this term. 

Lattice Boltzmann formulation for eight-wave magnetohydrodynamics
Dellar, P AIAA Journal volume 63 issue 2 583-597 (19 Jan 2025)
Optimal control of immune checkpoint inhibitor therapy in a heart-tumour model
van der Vegt, S Baker, R Waters, S
Tue, 11 Mar 2025
16:00
C3

Absolute dilation of Fourier multipliers

Safoura Zadeh
(University of Bristol )
Abstract

Rota’s Alternierende Verfahren theorem in classical probability theory, which examines the convergence of iterates of measure preserving Markov operators, relies on a dilation technique. In the noncommutative setting of von Neumann algebras, this idea leads to the notion of absolute dilation.  

In this talk, we explore when a Fourier multiplier on a group von Neumann algebra is absolutely dilatable. We discuss conditions that guarantee absolute dilatability and present an explicit counterexample—a Fourier multiplier that does not satisfy this property. This talk is based on a joint work with Christian Le Merdy.

Tue, 18 Feb 2025
16:00
C3

W*-superrigidity for group von Neumann algebras

Stefaan Vaes
(KU Leuven)
Abstract

A countable group G is said to be W*-superrigid if G can be entirely recovered from its ambient group von Neumann algebra L(G). I will present a series of joint works with Milan Donvil in which we establish new degrees of W*-superrigidity: isomorphisms may be replaced by virtual isomorphisms expressed by finite index bimodules, the group von Neumann algebra may be twisted by a 2-cocycle, the group G might have infinite center, or we may enlarge the category of discrete groups to the broader class of discrete quantum groups.

Subscribe to