Mathematical modelling to support New Zealand’s Covid-19 response
Abstract
In this talk, I will describe some of the ways in which mathematical modelling contributed to the Covid-19 pandemic response in New Zealand. New Zealand adopted an elimination strategy at the beginning of the pandemic and used a combination of public health measures and border restrictions to keep incidence of Covid-19 low until high vaccination rates were achieved. The low or zero prevalence for first 18 months of the pandemic called for a different set of modelling tools compared to high-prevalence settings. It also generated some unique data that can give valuable insights into epidemiological characteristics and dynamics. As well as describing some of the modelling approaches used, I will reflect on the value modelling can add to decision making and some of the challenges and opportunities in working with stakeholders in government and public health.
differential equation models
17:00
Gotzmann's persistence theorem for smooth projective toric varieties
Abstract
Gotzmann's regularity and persistence theorems provide tools which allow us to find explicit equations for the Hilbert scheme Hilb_P(P^n). A natural next step is to generalise these results to the multigraded Hilbert scheme Hilb_P(X) of a smooth projective toric variety X. In 2003 Maclagan and Smith generalise Gotzmann's regularity theorem to this case. We present new persistence type results for the product of two projective spaces, and time permitting discuss how these may be applied to a more general smooth projective toric variety.
14:30
Subleading structure of asymptotically-flat spacetimes
Abstract
In this talk I will explain how a dictionary between the Bondi-Sachs and the Newman-Penrose formalism can be used to organize the subleading data appearing in the metric for asymptotically-flat spacetimes. In particular, this can be used to show that the higher Bondi aspects can be traded for higher spin charges, and that the latter form a w_infinity algebra.