The application of orthogonal fractional polynomials on fractional integral equations
Abstract
We present a spectral method that converges exponentially for a variety of fractional integral equations on a closed interval. The method uses an orthogonal fractional polynomial basis that is obtained from an appropriate change of variable in classical Jacobi polynomials. For a problem arising from time-fractional heat and wave equations, we elaborate the complexities of three spectral methods, among which our method is the most performant due to its superior stability. We present algorithms for building the fractional integral operators, which are applied to the orthogonal fractional polynomial basis as matrices.
Topology optimisation method for fluid flow devices using the Multiple Reference Frame approach
Abstract
The main component of flow machines is the rotor; however, there may also be stationary parts surrounding the rotor, which are the diffuser blades. In order to consider these two parts simultaneously, the most intuitive approach is to perform a transient flow simulation; however, the computational cost is relatively high. Therefore, one possible approach is the Multiple Reference Frame (MRF) approach, which considers two directly coupled zones: one for the rotating reference frame (for the rotor blades) and one for the stationary reference frame (for the diffuser blades). When taking into account topology optimisation, some changes are required in order to take both rotating and stationary parts simultaneously in the design, which also leads to changes in the composition of the multi-objective function. Therefore, the topology optimisation method is formulated for MRF while also proposing this new multi-objective function. An integer variable-based optimisation algorithm is considered, with some adjustments for the MRF case. Some numerical examples are presented.
Reinforcement Learning for Combinatorial Optimization: Job-Shop Scheduling and Vehicle Routing Problem Cases
Abstract
Our research explores the application of reinforcement learning (RL) strategies to solve complex combinatorial research problems, specifically the Job-shop Scheduling Problem (JSP) and the Stochastic Vehicle Routing Problem with Time Windows (SVRP). For JSP, we utilize Curriculum Learning (CL) to enhance the performance of dispatching policies. This approach addresses the significant optimality gap in existing end-to-end solutions by structuring the training process into a sequence of increasingly complex tasks, thus facilitating the handling of larger, more intricate instances. Our study introduces a size-agnostic model and a novel strategy, the Reinforced Adaptive Staircase Curriculum Learning (RASCL), which dynamically adjusts difficulty levels during training, focusing on the most challenging instances. Experimental results on Taillard and Demirkol datasets show that our approach reduces the average optimality gap to 10.46% and 18.85%, respectively.
For SVRP, we propose an end-to-end framework employing an attention-based neural network trained through RL to minimize routing costs while addressing uncertain travel costs and demands, alongside specific customer delivery time windows. This model outperforms the state-of-the-art Ant-Colony Optimization algorithm by achieving a 1.73% reduction in travel costs and demonstrates robustness across diverse environmental settings, making it a valuable baseline for future research. Both studies mark advancements in the application of machine learning techniques to operational research.
13:00
SUPERTRANSLATIONS, ANGULAR MOMENTUM, AND COVARIANCE IN 4D ASYMPTOTICALLY FLAT SPACE
Abstract