Tue, 18 Oct 2022
12:30
C3

Recovering scattering distributions from covariance-map images of product distributions

Brady Metherall
Abstract

Molecules can be broken apart with a high-powered laser or an electron beam. The position of charged fragments can then be detected on a screen. From the mass to charge ratio, the identity of the fragments can be determined. The covariance of two fragments then gives us the projection of a distribution related to the initial scattering distribution. We formulate the mathematical transformation from the scattering distribution to the covariance distribution obtained from experiments. We expand the scattering distribution in terms of basis functions to obtain a linear system for the coefficients, which we use to solve the inverse problem. Finally, we show the result of our method on three examples of test data, and also with experimental data.

Mon, 07 Nov 2022

14:00 - 15:00
L4

Solving Continuous Control via Q-Learning

Markus Wulfmeier
(DeepMind)
Abstract

While there have been substantial successes of actor-critic methods in continuous control, simpler critic-only methods such as Q-learning often remain intractable in the associated high-dimensional action spaces. However, most actor-critic methods come at the cost of added complexity: heuristics for stabilisation, compute requirements as well as wider hyperparameter search spaces. To address this limitation, we demonstrate in two stages how a simple variant of Deep Q Learning matches state-of-the-art continuous actor-critic methods when learning from simpler features or even directly from raw pixels. First, we take inspiration from control theory and shift from continuous control with policy distributions whose support covers the entire action space to pure bang-bang control via Bernoulli distributions. And second, we combine this approach with naive value decomposition, framing single-agent control as cooperative multi-agent reinforcement learning (MARL). We finally add illustrative examples from control theory as well as classical bandit examples from cooperative MARL to provide intuition for 1) when action extrema are sufficient and 2) how decoupled value functions leverage state information to coordinate joint optimization.

LES-CHT for a rotating cavity with axial throughflow
Hickling, T He, L Journal of Turbomachinery (27 Oct 2022)
Optimal bailout strategies resulting from the drift controlled
supercooled Stefan problem
Cuchiero, C Reisinger, C Rigger, S (02 Nov 2021) http://arxiv.org/abs/2111.01783v3
Hypercontractivity meets random convex hulls: analysis of randomized multivariate cubatures
Hayakawa, S Lyons, T Oberhauser, H Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (17 May 2023)
Spatial Heterogeneity Localizes Turing Patterns in Reaction-Cross-Diffusion Systems
Gaffney, E Krause, A Maini, P Wang, C (18 Oct 2022)
Thu, 24 Nov 2022
16:00
L5

Weyl Subconvexity, Generalized $PGL_2$ Kuznetsov Formulas, and Optimal Large Sieves

Ian Petrow
(UCL)
Abstract

Abstract: We give a generalized Kuznetsov formula that allows one to impose additional conditions at finitely many primes.  The formula arises from the relative trace formula. I will discuss applications to spectral large sieve inequalities and subconvexity. This is work in progress with M.P. Young and Y. Hu.

 

Mon, 07 Nov 2022
15:00
N3.12

The Gauss problem for central leaves.

Valentijn Karemaker
(University of Utrecht)
Abstract

For a family of finite sets whose cardinalities are naturally called class numbers, the Gauss problem asks to determine the subfamily in which every member has class number one. We study the Siegel moduli space of abelian varieties in characteristic $p$ and solve the Gauss problem for the family of central leaves, which are the loci consisting of points whose associated $p$-divisible groups are isomorphic. Our solution involves mass formulae, computations of automorphism groups, and a careful analysis of Ekedahl-Oort strata in genus $4$. This geometric Gauss problem is closely related to an arithmetic Gauss problem for genera of positive-definite quaternion Hermitian lattices, which we also solve.

Thu, 24 Nov 2022
16:00
Virtual

The Legendre Memory Unit: A neural network with optimal time series compression

Chris Eliasmith
(University of Waterloo)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Further Information
Abstract

We have recently proposed a new kind of neural network, called a Legendre Memory Unit (LMU) that is provably optimal for compressing streaming time series data. In this talk, I describe this network, and a variety of state-of-the-art results that have been set using the LMU. I will include recent results on speech and language applications that demonstrate significant improvements over transformers. I will discuss variants of the original LMU that permit effective scaling on current GPUs and hold promise to provide extremely efficient edge time series processing.

Subscribe to