Langlands Functoriality for Symplectic Groups
Abstract
In this talk I will describe two instances of Langlands functoriality concerning the group $\mathrm{Sp}_{2n}$. I will then very briefly explain how this enables one to attach Galois representations to automorphic representations of (inner forms of) $\mathrm{Sp}_{2n}$.
TheLMS Hardy Lecture: The famous inverse scattering transform method and its less famous discrete version
Abstract
Abstract: The simplest solutions of integrable systems are special functions that have been known since the time of Newton, Gauss and Euler. These functions satisfy not only differential equations as functions of their independent variable but also difference equations as functions of their parameter(s). We show how the inverse scattering transform method, which was invented to solve the Korteweg-de Vries equation, can be extended to its discrete version.
S.Butler and N.Joshi, An inverse scattering transform for the lattice potential KdV equation, Inverse Problems 26 (2010) 115012 (28pp)
Anabelian Geometry with étale homotopy types
Abstract
Classical anabelian geometry shows that for hyperbolic curves the etale fundamental group encodes the curve provided the base field is sufficiently arithmetic. In higher dimensions it is natural to replace the etale fundamental group by the etale homotopy type. We will report on progress obtained in this direction in a recent joint work with Alexander Schmidt.
**Joint seminar with Logic.
On the Consistency Problem for Quine's New Foundations, NF
Abstract
In 1937 Quine introduced an interesting, rather unusual, set theory called New Foundations - NF for short. Since then the consistency of NF has been a problem that remains open today. But there has been considerable progress in our understanding of the problem. In particular NF was shown, by Specker in 1962, to be equiconsistent with a certain theory, TST^+ of simple types. Moreover Randall Holmes, who has been a long-term investigator of the problem, claims to have solved the problem by showing that TST^+ is indeed consistent. But the working manuscripts available on his web page that describe his possible proofs are not easy to understand - at least not by me.
Examples of quasiminimal classes
Abstract
I will explain the framework of quasiminimal structures and quasiminimal classes, and give some basic examples and open questions. Then I will explain some joint work with Martin Bays in which we have constructed variants of the pseudo-exponential fields (originally due to Boris Zilber) which are quasimininal and discuss progress towards the problem of showing that complex exponentiation is quasiminimal. I will also discuss some joint work with Adam Harris in which we try to build a pseudo-j-function.
Some effective instances of relative Manin-Mumford
Abstract
In a series of recent papers David Masser and Umberto Zannier proved the relative Manin-Mumford conjecture for abelian surfaces, at least when everything is defined over the algebraic numbers. In a further paper with Daniel Bertrand and Anand Pillay they have explained what happens in the semiabelian situation, under the same restriction as above.
At present it is not clear that these results are effective. I'll discuss joint work with Philipp Habegger and Masser and with Harry Schimdt in which we show that certain very special cases can be made effective. For instance, we can effectively compute a bound on the order of a root of unity t such that the point with abscissa 2 is torsion on the Legendre curve with parameter t.
**Note change of room**
Anabelian Geometry with étale homotopy types
Abstract
Classical anabelian geometry shows that for hyperbolic curves the etale fundamental group encodes the curve provided the base field is sufficiently arithmetic. In higher dimensions it is natural to replace the etale fundamental group by the etale homotopy type. We will report on progress obtained in this direction in a recent joint work with Alexander Schmidt.
**Joint seminar with Number Theory. Note unusual time and place**
Commutative 2-algebra, operads and analytic functors
Abstract
Standard commutative algebra is based on the notions of commutative monoid, Abelian group and commutative ring. In recent years, motivations from category theory, algebraic geometry, and mathematical logic led to the development of an area that may be called commutative 2-algebra, in which the notions used in commutative algebra are replaced by their category-theoretic counterparts (e.g. commutative monoids are replaced by symmetric monoidal categories). The aim of this talk is to explain the analogy between standard commutative algebra and commutative 2-algebra, and to outline how this suggests counterparts of basic aspects of algebraic geometry. In particular, I will describe some joint work with Andre’ Joyal on operads and analytic functors in this context.