Fri, 29 Jan 2016
16:00
L1

Structure, phase transitions, and belief propagation in sparse networks

Mark Newman
(Univ. of Michigan)
Abstract

Most networks and graphs encountered in empirical studies, including internet and web graphs, social networks, and biological and ecological networks, are very sparse.  Standard spectral and linear algebra methods can fail badly when applied to such networks and a fundamentally different approach is needed.  Message passing methods, such as belief propagation, offer a promising solution for these problems.  In this talk I will introduce some simple models of sparse networks and illustrate how message passing can form the basis for a wide range of calculations of their structure.  I will also show how message passing can be applied to real-world data to calculate fundamental properties such as percolation thresholds, graph spectra, and community structure, and how the fixed-point structure of the message passing equations has a deep connection with structural phase transitions in networks.

Mon, 20 Apr 2015
15:45
L6

Homological stability for configuration spaces on closed manifolds

Martin Palmer
(Muenster)
Abstract

Unordered configuration spaces on (connected) manifolds are basic objects
that appear in connection with many different areas of topology. When the
manifold M is non-compact, a theorem of McDuff and Segal states that these
spaces satisfy a phenomenon known as homological stability: fixing q, the
homology groups H_q(C_k(M)) are eventually independent of k. Here, C_k(M)
denotes the space of k-point configurations and homology is taken with
coefficients in Z. However, this statement is in general false for closed
manifolds M, although some conditional results in this direction are known.

I will explain some recent joint work with Federico Cantero, in which we
extend all the previously known results in this situation. One key idea is
to introduce so-called "replication maps" between configuration spaces,
which in a sense replace the "stabilisation maps" that exist only in the
case of non-compact manifolds. One corollary of our results is to recover a
"homological periodicity" theorem of Nagpal -- taking homology with field
coefficients and fixing q, the sequence of homology groups H_q(C_k(M)) is
eventually periodic in k -- and we obtain a much simpler estimate for the
period. Another result is that homological stability holds with Z[1/2]
coefficients whenever M is odd-dimensional, and in fact we improve this to
stability with Z coefficients for 3- and 7-dimensional manifolds.

Mon, 01 Jun 2015
15:45

Volatility is rough

Mathieu Rosenbaum
(University Pierre and Marie Curie ( Paris 6))
Abstract

: Estimating volatility from recent high frequency data, we revisit the question of the smoothness of the volatility process. Our main result is that log-volatility behaves essentially as a fractional Brownian motion with Hurst exponent H of order 0.1, at any reasonable time scale.

This leads us to adopt the fractional stochastic volatility (FSV) model of Comte and Renault.

We call our model Rough FSV (RFSV) to underline that, in contrast to FSV, H<1/2.

We demonstrate that our RFSV model is remarkably consistent with financial time series data; one application is that it enables us to obtain improved forecasts of realized volatility.

Furthermore, we find that although volatility is not long memory in the RFSV model, classical statistical procedures aiming at detecting volatility persistence tend to conclude the presence of long memory in data generated from it.

This sheds light on why long memory of volatility has been widely accepted as a stylized fact.

Finally, we provide a quantitative market microstructure-based foundation for our findings, relating the roughness of volatility to high frequency trading and order splitting.

This is joint work with Jim Gatheral and Thibault Jaisson.

Mon, 01 Jun 2015
14:15

tba

Nikolas Kantas
(Imperial College London)
Mon, 01 Jun 2015

10:00 - 11:00
L5

Examples of 2d incompressible flows and certain model equations

Vladimir Sverak
(University of Minnesota)
Abstract

We will discuss 2d Euler and Boussinesq (incompressible) flows related to a possible boundary blow-up scenario for the 3d axi-symmetric case suggested by G. Luo and T. Hou, together with some easier model problems relevant for that situation.

Mon, 11 May 2015
15:45

Tail Estimates for Markovian Rough Paths

Marcel Ogrodnik
(Imperial College London)
Abstract

We work in the context of Markovian rough paths associated to a class of uniformly subelliptic Dirichlet forms and prove an almost-Gaussian tail-estimate for the accumulated local p-variation functional, which has been introduced and studied by Cass, Litterer and Lyons. We comment on the significance of these estimates to a range of currently-studied problems, including the recent results of Ni Hao, and Chevyrev and Lyons.

Mon, 11 May 2015
14:15

Likelihood construction for discretely observed RDEs

Anastasia Papavasiliou
(Warwick University)
Abstract

The main goal of the talk is to set up a framework for constructing the likelihood for discretely observed RDEs. The main idea is to contract a function mapping the discretely observed data to the corresponding increments of the driving noise. Once this is known, the likelihood of the observations can be written as the likelihood of the increments of the corresponding noise times the Jacobian correction.

Constructing a function mapping data to noise is equivalent to solving the inverse problem of looking for the input given the output of the Ito map corresponding to the RDE. First, I simplify the problem by assuming that the driving noise is linear between observations. Then, I will introduce an iterative process and show that it converges in p-variation to the piecewise linear path X corresponding to the observations. Finally, I will show that the total error in the likelihood construction is bounded in p-variation.

Subscribe to