Wed, 04 Mar 2015

15:00 - 16:00
C5

Residual finiteness in outer automorphisms of graph products of groups

Michal Ferov
(Southampton)
Abstract

A group is called residually finite if every non-trivial element can be homomorphically mapped to a finite group such that the image is again non-trivial. Residually finite groups are interesting because quite a lot of information about them can be reconstructed from their finite quotients. Baumslag showed that if G is a finitely generated residually finite group then Aut(G) is also residually finite. Using a similar method Grossman showed that if G is a finitely generated conjugacy separable group with "nice" automorphisms then Out(G) is residually finite. The graph product is a group theoretic construction naturally generalising free and direct products in the category of groups. We show that if G is a finite graph product of finitely generated residually finite groups then Out(G) is residually finite (modulo some technical conditions)

Wed, 25 Feb 2015

16:00 - 17:00
C1

3-manifolds and Kähler groups

Claudio Llosa Isenrich
(Oxford)
Abstract

A Kähler group is a group which is isomorphic to the fundamental group of a compact Kähler manifold. In 2008 Dimca and Suciu proved that the groups which are both Kähler and isomorphic to the fundamental group of a closed 3-manifold are precisely the finite subgroups of $O(4)$ which act freely on $S^3$. In this talk we will explain Kotschick's proof of this result. On the 3-manifold side the main tools that will be used are the first Betti number and Poincare Duality and on the Kähler group side we will make use of the Albanese map and some basic results about Kähler groups. All relevant notions will be explained in the talk.

Thu, 26 Feb 2015

16:00 - 17:00
C2

On Weyl's Problem of Isometric Embedding

Siran Li
(Oxford)
Abstract

In this talk I shall discuss some classical results on isometric embedding of positively/nonegatively curved surfaces into $\mathbb{R}^3$. 

    The isometric embedding problem has played a crucial role in the development of geometric analysis and nonlinear PDE techniques--Nash invented his Nash-Moser techniques to prove the embeddability of general manifolds; later Gromov recast the problem into his ``h-Principle", which recently led to a major breakthrough by C. De Lellis et al. in the analysis of Euler/Navier-Stokes. Moreover, Nirenberg settled (positively) the Weyl Problem: given a smooth metric with strictly positive Gaussian curvature on a closed surface, does there exist a global isometric embedding into the Euclidean space $\mathbb{R}^3$? This work is proved by the continuity method and based on the regularity theory of the Monge-Ampere Equation, which led to Cheng-Yau's renowned works on the Minkowski Problem and the Calabi Conjecture. 

    Today we shall summarise Nirenberg's original proof for the Weyl problem. Also, we shall describe Hamilton's simplified proof using Nash-Moser Inverse Function Theorem, and Guan-Li's generalisation to the case of nonnegative Gaussian curvature. We shall also mention the status-quo of the related problems.

Thu, 12 Feb 2015

16:00 - 17:00
C2

Introduction to conformal symmetry

Agnese Bissi
(Oxford)
Abstract

 In this talk I will present a basic introduction to conformal symmetry from a physicist perspective. I will talk about infinitesimal and finite conformal transformations and the conformal group in diverse dimensions. 

Thu, 05 Feb 2015

16:00 - 17:00
C2

G-Higgs bundles, mirror symmetry and Langlands duality

Lucas Branco
(Oxford)
Abstract

The moduli space of G-Higgs bundles carries a natural Hyperkahler structure, through which we can study Lagrangian subspaces (A-branes) or holomorphic subspaces (B-branes) with respect to each structure. Notably, these A and B-branes have gained significant attention in string theory.

We shall begin the talk by first introducing G-Higgs bundles for reductive Lie groups and the associated Hitchin fibration, and sketching how to realize Langlands duality through spectral data. We shall then look at particular types of branes (BAA-branes) which correspond to very interesting geometric objects, hyperholomorphic bundles (BBB-branes). 

The presentation will be introductory and my goal is simply to sketch some of the ideas relating these very interesting areas. 

Thu, 29 Jan 2015

16:00 - 17:00
C2

Simple Homotopy Theory and the Poincaré Conjecture

Robert Kropholler
(Oxford)
Abstract

I will introduce simple homotopy theory and then discuss relations between some conjectures in 2 dimensional simple homotopy theory and the 3 and 4 dimensional Poincaré conjectures.

Fri, 06 Mar 2015

10:00 - 11:00
L4

Thales - Optimisation of complex processing systems

Mike Newman
Abstract

The behaviour of complex processing systems is often controlled by large numbers of parameters.  For example, one Thales radar processor has over 2000 adjustable parameters.  Evaluating the performance for each set of parameters is typically time-consuming, involving either simulation or processing of large recorded data sets (or both).  In processing recorded data, the optimum parameters for one data set are unlikely to be optimal for another.

We would be interested in discussing mathematical techniques that could make the process of optimisation more efficient and effective, and what we might learn from a more mathematical approach.

Fri, 13 Feb 2015

10:00 - 11:00
L5

VerdErg - VETT, a new low-head hydropower generator: minimising the losses

Abstract

VerdErg Renewable Energy Ltd is developing a new hydropower unit for cost-effective energy generation at very low heads of pressure. The device is called the VETT after the underlying technology – Venturi Enhanced Turbine Technology. Flow into the VETT is split into two. The larger flow at low head transfers its energy to the smaller flow at a greater head. The smaller flow powers a conventional turbo-generator which can be a smaller, faster unit at an order of magnitude lower cost. Further, there are significant environmental benefits to fish and birds compared to the conventional hydropower solution. After several physical model test programmes* in the UK, France and The Netherlands along with CFD studies the efficiency now stands at 50%. We wish to increase that by understanding the major loss mechanisms and how they might be avoided or minimised.

The presentation will explain the VETT’s working principles and key relationships, together with some possible ideas for improvement. The comments of attendees on problem areas, potential solutions and how an enhanced understanding of key phenomena may be applied will be most welcome.

*(One was observed by Prof John Ockendon who identified a fairly extreme flow condition in a region previously thought to be benign.)

Thu, 12 Mar 2015

17:30 - 18:30
L6

Rosenthal compacta and NIP formulas

Pierre Simon
(Université Lyon I)
Abstract

A compact space is a Rosenthal compactum if it can be embedded into the space of Baire class 1 functions on a Polish space. Those objects have been well studied in functional analysis and set theory. In this talk, I will explain the link between them and the model-theoretic notion of NIP and how they can be used to prove new results in model theory on the topology of the space of types.
 

Thu, 05 Mar 2015

11:00 - 12:30
C5

QE in ACFA is PR

Ivan Tomasic
(QMUL)
Abstract

NOTE CHANGE OF TIME AND PLACE

It is known by results of Macintyre and Chatzidakis-Hrushovski that the theory ACFA of existentially closed difference fields is decidable. By developing techniques of difference algebraic geometry, we view quantifier elimination as an instance of a direct image theorem for Galois formulae on difference schemes. In a context where we restrict ourselves to directly presented difference schemes whose definition only involves algebraic correspondences, we develop a coarser yet effective procedure, resulting in a primitive recursive quantifier elimination. We shall discuss various algebraic applications of Galois stratification and connections to fields with Frobenius.

 

Subscribe to