Oxford University will play a key role in the creation and the activities of the new Alan Turing Institute. The Institute will build on the UK's existing academic strengths and help position the country as a world leader in the analysis and application of big data and algorithm research. Its headquarters will be based at the British Library in London.

Oxford is one of the five universities selected to lead the Alan Turing Institute, Rt Hon Dr Vince Cable, Secretary of State for Business, Innovation and Skills, announced today.

James Maynard has been awarded a Clay Research Fellowship.  James obtained his doctorate at Oxford in 2013 under the supervision of Roger Heath-Brown and is currently a Fellow by Examination at Magdalen College, Oxford. James is primarily interested in classical number theory, in particular the distribution of prime numbers. His research focuses on using tools from analytic number theory, particularly sieve methods, to study the primes.

Mon, 09 Feb 2015

12:00 - 13:00
L5

Generalised geometry for supergravity and flux vacua

Charles Strickland-Constable
(CEA/Saclay)
Abstract

Motivated by the study of supersymmetric backgrounds with non-trivial fluxes, we provide a formulation of supergravity in the language of generalised geometry, as first introduced by Hitchin, and its extensions. This description both dramatically simplifies the equations of the theory by making the hidden symmetries manifest, and writes the bosonic sector geometrically as a direct analogue of Einstein gravity. Further, a natural analogue of special holonomy manifolds emerges and coincides with the conditions for supersymmetric backgrounds with flux, thus formulating these systems as integrable geometric structures.
 

Tue, 10 Mar 2015
14:30
L6

Local resilience of spanning subgraphs in sparse random graphs

Julia Böttcher
(London School of Economics)
Abstract

Dellamonica, Kohayakawa, Rödl and Ruciński showed that for $p=C(\log n/n)^{1/d}$ the random graph $G(n,p)$ contains asymptotically almost surely all spanning graphs $H$ with maximum degree $d$ as subgraphs. In this talk I will discuss a resilience version of this result, which shows that for the same edge density, even if a $(1/k-\epsilon)$-fraction of the edges at every vertex is deleted adversarially from $G(n,p)$, the resulting graph continues to contain asymptotically almost surely all spanning $H$ with maximum degree $d$, with sublinear bandwidth and with at least $C \max\{p^{-2},p^{-1}\log n\}$ vertices not in triangles. Neither the restriction on the bandwidth, nor the condition that not all vertices are allowed to be in triangles can be removed. The proof uses a sparse version of the Blow-Up Lemma. Joint work with Peter Allen, Julia Ehrenmüller, Anusch Taraz.

Tue, 17 Feb 2015
14:30
L6

Monochromatic cycle partitions - an exact result

Shoham Letzter
(Cambridge University)
Abstract
In 2011, Schelp introduced the idea of considering Ramsey-Turán type problems for graphs with large minimum degree. Inspired by his questions, Balogh, Barat, Gerbner, Gyárfás, and Sárközy suggested the following conjecture. Let $G$ be a graph on $n$ vertices with minimum degree at least $3n/4$. Then for every red and blue colouring of the edges of $G$, the vertices of $G$ may be partitioned into two vertex-disjoint cycles, one red and the other blue. They proved an approximate version of the conjecture, and recently DeBiasio and Nelsen obtained stronger approximate results. We prove the conjecture exactly (for large $n$). I will give an overview of the history of this problem and describe some of the tools that are used for the proof. I will finish with a discussion of possible future work for which the methods we use may be applicable.
Tue, 10 Feb 2015
14:30
L6

Points in almost general position

Luka Milicevic
(Cambridge University)
Abstract

Erdős asked the following question: given a positive integer $n$, what is the largest integer $k$ such that any set of $n$ points in a plane, with no $4$ on a line, contains $k$ points no $3$ of which are collinear? Füredi proved that $k = o(n)$. Cardinal, Toth and Wood extended this result to $\mathbb{R}^3$, finding sets of $n$ points with no $5$ on a plane whose subsets with no $4$ points on a plane have size $o(n)$, and asked the question for the higher dimensions. For given $n$, let $k$ be largest integer such that any set of $n$ points in $\mathbb{R}^d$ with no more than $d + 1$ cohyperplanar points, has $k$ points with no $d + 1$ on a hyperplane. Is $k = o(n)$? We prove that $k = o(n)$ for any fixed $d \geq 3$.

Mon, 02 Feb 2015

12:00 - 13:00
Fisher Room of NAPL

BRST Cohomology, Extraordinary Invariants and the Zen Splitting of SUSY

John Dixon
(visiting Oxford)
Abstract

The chiral scalar superfield has interesting BRST cohomology, but the relevant cohomology objects all  have spinor indices. So they cannot occur in an action. They need to be coupled to a chiral dotted spinor superfield. Until now, this has been very problematic, since no sensible action for a chiral dotted spinor superfield was known.  The most obvious such action contains higher derivatives and tachyons.

Now,  a sensible  action has been found. When coupled to the cohomology, this action removes the supersymmetry charge from the theory while maintaining the rigidity and power of supersymmetry.The simplest example of this phenomenon has exactly the fermion content of the Leptons or the Quarks.  The mechanism has the potential to get around the cosmological constant problem, and also the problem of the sum rules of spontaneously broken supersymmetry.

Mon, 02 Mar 2015

12:00 - 13:00
L3

Symmetry enhancement near horizons

George Papadopoulos
(Kings College London)
Abstract

I shall demonstrate, under some mild assumptions, that the symmetry group of  extreme, Killing, supergravity horzions contains an sl(2, R) subalgebra.  The proof requires a generalization of the  Lichnerowicz theorem for non-metric connections. The techniques developed can also be applied in the classification
of AdS and Minkowski flux backgrounds.
 

Subscribe to