Oxford Mathematics Professor Mason Porter and former postdoctoral student Sang Hoon Lee, now of Sungkyunkwan University in Korea, have found a new way of analysing population mix. In the past patterns in human movement have been studied using traffic data, mobile phone records, and even dollar bill circulation.
Family Drop-In Art Workshops
Abstract
Struggling for ideas at the weekends? Learn how to draw with colour and discover the creation of colour from our natural environment. Have a go at making your own natural paint colours. Create your own mini planet inspired by alchemy and the Radcliffe Observatory. Paint making demonstrations throughout the day with artist Nabil Al. All materials provided. Suitable for all ages from 6 to 60. Invite your friends.
17:00
Big Data's Big Deal
Abstract
Viktor Mayer-Schönberger is Professor of Internet Governance and Regulation at the University of Oxford's Internet Institute. He is also a faculty affiliate of Harvard's Belfer Center for Science and International Affairs. Together with Kenneth Cukier he is the co-author of the international bestseller Big Data.
14:00
Pandora's Promise
Abstract
Grothendieck Duality through Modern Methods
Abstract
12:00
On the symmetries of “Yang-Mills squared”
Abstract
A recurring theme in attempts to understand the quantum theory of gravity is the idea of "Gravity as the square of Yang-Mills". In recent years this idea has been met with renewed energy, principally driven by a string of discoveries uncovering intriguing and powerful identities relating gravity and gauge scattering amplitudes. In an effort to develop this program further, we explore the relationship between both the global and local symmetries of (super)gravity and those of (super) Yang-Mills theories squared. In the context of global symmetries we begin by giving a unified description of D=3 super-Yang-Mills theory with N=1, 2, 4, 8 supersymmeties in terms of the four division algebras: reals, complex, quaternions and octonions. On taking the product of these multiplets we obtain a set of D=3 supergravity theories with global symmetries (U-dualities) belonging to the Freudenthal magic square: “division algebras squared” = “Yang-Mills squared”! By generalising to D=3,4,6,10 we uncover a magic pyramid of Lie algebras. We then turn our attention to local symmetries. Regarding gravity as the convolution of left and right Yang-Mills theories together with a spectator scalar field in the bi-adjoint representation, we derive in linearised approximation the gravitational symmetries of general covariance, p-form gauge invariance, local Lorentz invariance and local supersymmetry from the flat space Yang-Mills symmetries of local gauge invariance and global super-Poincaré. As a concrete example we focus on the new-minimal (12+12, N=1) off-shell version four-dimensional supergravity obtained by tensoring the off-shell (super) Yang-Mills multiplets (4+4, N =1) and (3+0, N =0).
11:00
Symmetries, K-theory, and the Bott periodicity of topological phases
Abstract
Topological phases of matter exhibit Bott-like periodicity with respect to
time-reversal, charge conjugation, and spatial dimension. I will explain how
the non-commutative topology in topological phases originates very generally
from symmetry data, and how operator K-theory provides a powerful and
natural framework for studying them.