Thu, 04 Dec 2014

16:00 - 17:00
L5

Twitter Video Download

Alexei Skorobogatov
(Imperial College London)
Further Information

Twitter Video Download: https://indireyim.com/

Abstract

Rational points on Kummer varieties can be studied through the variation of Selmer groups of quadratic twists of the underlying abelian variety, using an idea of Swinnerton-Dyer. We consider the case when the Galois action on 2-torsion has a large image. Under a mild additional assumption we prove the Hasse principle assuming the finiteness of relevant Shafarevich-Tate groups. This approach is inspired by the work of Mazur and Rubin.

Thu, 04 Dec 2014

17:30 - 18:30
L5

Towards a pseudo j-function

Adam Harris
(UEA)
Abstract

I will outline some recent work with Jonathan Kirby regarding the first stage in the construction of the pseudo j-function. In particular, I will go through the construction of the analogue of the canonical countable pseudo exponential field as the "Fraisse limit" of a category of "partial j-fields". Although I will be talking about the j-function throughout the talk, it is not necessary to know anything about the j-function to get something from the talk. In particular, even if you don't know what the j-function is, you will still hopefully have an understanding of how to construct the countable pseudo-exp by the end of the talk.
 

Thu, 06 Nov 2014

17:30 - 18:30
L6

A general framework for dualities

Luca Spada
(Salerno and Amsterdam)
Abstract

The aim of this talk is to provide a general setting in which a number of important dualities in mathematics can be framed uniformly.  The setting comes about as a natural generalisation of the Galois connection between ideals of polynomials with coefficients in a field K and affine varieties in K^n.  The general picture that comes into sight is that the topological representations of Stone, Priestley, Baker-Beynon, Gel’fand, or Pontryagin are to their respective classes of structures just as affine varieties are to K-algebras.

Tue, 28 Oct 2014

17:00 - 18:00
C2

Ziegler spectra of domestic string algebras

Mike Prest
(Manchester)
Abstract

Note: joint with Algebra seminar.

String algebras are tame - their finite-dimensional representations have been classified - and the Auslander-Reiten quiver of such an algebra shows some of the morphisms between them.  But not all.  To see the morphisms which pass between components of the Auslander-Reiten quiver, and so obtain a more complete picture of the category of representations, we should look at certain infinite-dimensional representations and use ideas and techniques from the model theory of modules.

This is joint work with Rosie Laking and Gena Puninski:
G. Puninski and M. Prest,  Ringel's conjecture for domestic string algebras, arXiv:1407.7470;
R. Laking, M. Prest and G. Puninski, Krull-Gabriel dimension of domestic string algebras, in preparation.

Thu, 23 Oct 2014

17:30 - 18:30
L6

Self-reference in arithmetic

Volker Halbach
(Oxford)
Abstract

A G\"odel sentence is often described as a sentence saying about itself that it is not provable, and a Henkin sentence as a sentence stating its own provability. We discuss what it could mean for a sentence to ascribe to itself a property such as provability or unprovability. The starting point will be the answer Kreisel gave to Henkin's problem. We describe how the properties of the supposedly self-referential sentences depend on the chosen coding, the formulae expressing the properties and the way a fixed point for the formula is obtained. Some further examples of self-referential sentences are considered, such as sentences that \anf{say of themselves} that they are $\Sigma^0_n$-true (or $\Pi^0_n$-true), and their formal properties are investigated.

Thu, 16 Oct 2014

17:30 - 18:30
L6

On the o-minimal Hilbert's fifth problem

Mario Edmundo
(Universidade de Lisboa)
Abstract

The fundamental results about definable groups in o-minimal structures all suggested a deep connection between these groups and Lie groups. Pillay's conjecture explicitly formulates this connection in analogy to Hilbert's fifth problem for locally compact topological groups, namely, a definably compact group is, after taking a suitable the quotient by a "small" (type definable of bounded index) subgroup, a Lie group of the same dimension. In this talk we will report on the proof of this conjecture in the remaining open case, i.e. in arbitrary o-minimal structures. Most of the talk will be devoted to one of the required tools, the formalism of the six Grothendieck operations of o-minimals sheaves, which might be useful on it own. 

Thu, 27 Nov 2014

16:00 - 17:00
C2

Lagrangian Floer theory

Lino Campos
(Oxford University)
Abstract

Lagrangian Floer cohomology categorifies the intersection number of (half-dimensional) Lagrangian submanifolds of a symplectic manifold. In this talk I will describe how and when can we define Lagrangian Floer cohomology. In the case when Floer cohomology cannot be defined I will describe an alternative invariant known as the Fukaya (A-infinity) algebra.

Thu, 20 Nov 2014

16:00 - 17:00
C2

Cancelled

Felix Tennie
(Oxford University)
Thu, 30 Oct 2014

16:00 - 17:00
C2

Finiteness properties of Kähler groups

Claudio Llosa
(Oxford University)
Abstract

In this talk we want to discuss results by Dimca, Papadima, and Suciu about the finiteness properties of Kähler groups. Namely, we will sketch their proof that for every $2\leq n\leq \infty$ there is a Kähler group with finiteness property $\mathcal{F}_n$, but not $FP_{n+1}$. Their proof is by explicit construction of examples. These examples all arise as subgroups of finite products of surface groups and they are the first known examples of Kähler groups with arbitrary finiteness properties. The talk does not require any prior knowledge of finiteness properties or of Kähler groups.

Subscribe to