Thu, 17 Oct 2024

14:00 - 15:00
Lecture Room 3

On the loss of orthogonality in low-synchronization variants of reorthogonalized block classical Gram-Schmidt

Kathryn Lund
(STFC Rutherford Appleton Laboratory)
Abstract
Interest in communication-avoiding orthogonalization schemes for high-performance computing has been growing recently.  We address open questions about the numerical stability of various block classical Gram-Schmidt variants that have been proposed in the past few years.  An abstract framework is employed, the flexibility of which allows for new rigorous bounds on the loss of orthogonality in these variants. We first analyse a generalization of (reorthogonalized) block classical Gram-Schmidt and show that a "strong'' intrablock orthogonalization routine is only needed for the very first block in order to maintain orthogonality on the level of the unit roundoff. 
Using this variant, which has four synchronization points per block column, we remove the synchronization points one at a time and analyse how each alteration affects the stability of the resulting method. Our analysis shows that the variant requiring only one synchronization per block column cannot be guaranteed to be stable in practice, as stability begins to degrade with the first reduction of synchronization points.
Our analysis of block methods also provides new theoretical results for the single-column case. In particular, it is proven that DCGS2 from Bielich, D. et al. {Par. Comput.} 112 (2022)] and CGS-2 from Swirydowicz, K. et al, {Num. Lin. Alg. Appl.} 28 (2021)] are as stable as Householder QR.  
Numerical examples from the BlockStab toolbox are included throughout, to help compare variants and illustrate the effects of different choices of intraorthogonalization subroutines.


 

Using real-time modelling to inform the 2017 Ebola outbreak response in DR Congo
Thompson, R Hart, W Keita, M Fall, I Gueye, A Chamla, D Mossoko, M Ahuka-Mundeke, S Nsio-Mbeta, J Jombart, T Polonsky, J Nature Communications volume 15 issue 1 (06 Jul 2024)

Join us in the Radcliffe Science Library to plant a plug (young plant) in a pot, pack in compost and take away the plant with you. Book your place and enjoy the texture of fresh soil on your hands and the joy of a plant to bring home. Drop in anytime during the 2 hour slot.

Date: Wednesday 12 June

Time: 10am-12pm

Location: Wellbeing Room, Radcliffe Science Library

Fri, 28 Jun 2024

12:00 - 13:15
L3

Homological link invariants from categories of A-branes

Elise LePage
(University of California Berkeley)
Abstract

In recent work, Aganagic proposed a categorification of quantum link invariants based on a category of A-branes. The theory is a generalization of Heegaard–Floer theory from gl(1|1) to arbitrary Lie algebras. It turns out that this theory is solvable explicitly and can be used to compute homological link invariants associated to any minuscule representation of a simple Lie algebra. This invariant coincides with Khovanov–Rozansky homology for type A and gives a new invariant for other types. In this talk, I will introduce the relevant category of A-branes, explain the explicit algorithm used to compute the link invariants, and give a sketch of the proof of invariance. This talk is based on 2305.13480 with Mina Aganagic and Miroslav Rapcak and work in progress with Mina Aganagic and Ivan Danilenko.

Hello from your weekly Student Bulletin.

It's the last week (and last Bulletin!) of term, and we are in the midst of exams. The Academic Admin office sends everyone sitting exams luck for the coming weeks.

As always, do make use of Student Welfare, which offers a number of services including counselling, Nightline, and peer supporters. 

Subscribe to