Tue, 27 Feb 2024
11:00
L5

Deep Transfer Learning for Adaptive Model Predictive Control

Harrison Waldon
(Oxford Man Institute)
Abstract

This paper presents the (Adaptive) Iterative Linear Quadratic Regulator Deep Galerkin Method (AIR-DGM), a novel approach for solving optimal control (OC) problems in dynamic and uncertain environments. Traditional OC methods face challenges in scalability and adaptability due to the curse-of-dimensionality and reliance on accurate models. Model Predictive Control (MPC) addresses these issues but is limited to open-loop controls. With (A)ILQR-DGM, we combine deep learning with OC to compute closed-loop control policies that adapt to changing dynamics. Our methodology is split into two phases; offline and online. In the offline phase, ILQR-DGM computes globally optimal control by minimizing a variational formulation of the Hamilton-Jacobi-Bellman (HJB) equation. To improve performance over DGM (Sirignano & Spiliopoulos, 2018), ILQR-DGM uses the ILQR method (Todorov & Li, 2005) to initialize the value function and policy networks. In the online phase, AIR-DGM solves continuously updated OC problems based on noisy observations of the environment. We provide results based on HJB stability theory to show that AIR-DGM leverages Transfer Learning (TL) to adapt the optimal policy. We test (A)ILQR-DGM in various setups and demonstrate its superior performance over traditional methods, especially in scenarios with misspecified priors and changing dynamics.

Thu, 25 Jan 2024
16:00
L3

Causal transport on path space

Rui Lim
(Mathematical Insitute, Oxford)
Further Information

Join us for refreshments from 330 outside L3.

Abstract

Causal optimal transport and the related adapted Wasserstein distance have recently been popularized as a more appropriate alternative to the classical Wasserstein distance in the context of stochastic analysis and mathematical finance. In this talk, we establish some interesting consequences of causality for transports on the space of continuous functions between the laws of stochastic differential equations.
 

We first characterize bicausal transport plans and maps between the laws of stochastic differential equations. As an application, we are able to provide necessary and sufficient conditions for bicausal transport plans to be induced by bi-causal maps. Analogous to the classical case, we show that bicausal Monge transports are dense in the set of bicausal couplings between laws of SDEs with unique strong solutions and regular coefficients.

 This is a joint work with Rama Cont.

Thu, 08 Feb 2024
16:00
Lecture Room 4, Mathematical Institute

Inhomogeneous Kaufman measures and diophantine approximation

Sam Chow
(Dept. Mathematics, University of Warwick)
Abstract

Kaufman constructed a family of Fourier-decaying measures on the set of badly approximable numbers. Pollington and Velani used these to show that Littlewood’s conjecture holds for a full-dimensional set of pairs of badly approximable numbers. We construct analogous measures that have implications for inhomogeneous diophantine approximation. In joint work with Agamemnon Zafeiropoulos and Evgeniy Zorin, our idea is to shift the continued fraction and Ostrowski expansions simultaneously.

Mon, 29 Apr 2024

11:00 - 12:00
Lecture Room 3

Deep Gaussian processes: theory and applications

Aretha Teckentrup
(University of Edinburgh)
Further Information

Please note that this seminar starts at 11am and finishes at 12pm. 

Abstract

Deep Gaussian processes have proved remarkably successful as a tool for various statistical inference tasks. This success relates in part to the flexibility of these processes and their ability to capture complex, non-stationary behaviours. 

In this talk, we will introduce the general framework of deep Gaussian processes, in which many examples can be constructed, and demonstrate their superiority in inverse problems including computational imaging and regression.

 We will discuss recent algorithmic developments for efficient sampling, as well as recent theoretical results which give crucial insight into the behaviour of the methodology.

 

Tue, 20 Feb 2024
12:30
L4

Gravitational Observatories

Dionysios Anninos
(King's College London)
Abstract

We discuss timelike surfaces of finite size in general relativity and the initial boundary value problem. We consider obstructions with the standard Dirichlet problem, and conformal version with improved properties. The ensuing dynamical features are discussed with general cosmological constant.

Fri, 17 May 2024

12:00 - 13:00
Quillen Room

Truncated current Lie algebras and their representation theory in positive characteristic.

Matthew Chaffe
(University of Birmingham)
Abstract

In this talk I will discuss the representation theory of truncated current Lie algebras in prime characteristic. I will first give an introduction to modular representation theory for general restricted Lie algebras and introduce the Kac-Weisfeiler conjectures. Then I will introduce a family of Lie algebras known as truncated current Lie algebras, and discuss their representation theory and its relationship with the representation theory of reductive Lie algebras in positive characteristic.

Thu, 07 Mar 2024
16:00
Lecture Room 4

Unitary Friedberg–Jacquet periods and anticyclotomic p-adic L-functions

Andrew Graham
(MPIM Bonn)
Abstract
I will describe the construction of a “square root” anticyclotomic p-adic L-function for symplectic type automorphic representations of the unitary group U(1, 2n-1). This can be seen as a higher dimensional generalisation of the work of Bertolini–Darmon–Prasanna, and one of the main ingredients is the p-adic iteration of Maass–Shimura operators in higher degrees of coherent cohomology. If time permits, I will describe the expected relation with Euler systems outside the region of interpolation.
Wed, 06 Mar 2024

16:00 - 17:00
L6

Anosov Flows and Topology

Michael Schmalian
(University of Oxford)
Abstract

We will give a relaxed introduction to some of the most classical dynamical systems - Anosov flows. These flows were highly influential in the development of ideas which the audience might be more familiar with. For example, Anosov flows give rise to exponential group growth and taut foliations, both of which we will discuss. Finally, we will talk about some recent work obstructing Anosov flows and their combinatorial analogs - veering triangulations

Wed, 28 Feb 2024

16:00 - 17:00
L6

Revisiting property (T)

Ismael Morales
(University of Oxford)
Abstract

Property (T) was introduced by Kazhdan in the sixties to show that lattices in higher rank semisimple Lie groups are finitely generated. We will discuss some classical examples of groups that satisfy this property, with a particular focus on SL(3, R).

Wed, 14 Feb 2024

16:00 - 17:00
L6

One-ended graph braid groups and where to find them

Ruta Sliazkaite
(University of Warwick)
Abstract

Graph braid groups are similar to braid groups, except that they are defined as ‘braids’ on a graph, rather than the real plane. We can think of graph braid groups in terms of the discrete configuration space of a graph, which is a CW-complex. One can compute a presentation of a graph braid group using Morse theory. In this talk I will give a few examples on how to compute these presentations in terms of generating circuits of the graph. I will then go through a detailed example of a graph that gives a one-ended braid group.

Subscribe to