Tue, 06 Feb 2024

16:00 - 17:00
C2

Quasidiagonal group actions and C^*-lifting problems

Samantha Pilgrim
(University of Glasgow)
Abstract

I will give an introduction to quasidiagonality of group actions wherein an action on a C^*-algebra is approximated by actions on matrix algebras.  This has implications for crossed product C^*-algebras, especially as pertains to finite dimensional approximation.  I'll sketch the proof that all isometric actions are quasidiagonal, which we can view as a dynamical Petr-Weyl theorem.  Then I will discuss an interplay between quasidiagonal actions and semiprojectivity of C^*-algebras, a property that allows "almost representations" to be perturbed to honest ones.  

Thu, 01 Feb 2024

16:00 - 17:00
C2

Classifiability of crossed products

Eusebio Gardella
(Chalmers, Gothenberg)
Abstract

To every action of a discrete group on a compact Hausdorff space one can canonically associate a C*-algebra, called the crossed product. The crossed product construction is an extremely popular one, and there are numerous results in the literature that describe the structure of this C* algebra in terms of the dynamical system. In this talk, we will focus on one of the central notions in the realm of the classification of simple, nuclear C*-algebras, namely Jiang-Su stability. We will review the existing results and report on the most recent progress in this direction, going beyond the case of free actions both for amenable and nonamenable groups. 

Parts of this talk are joint works with Geffen, Kranz, and Naryshkin, and with Geffen, Gesing, Kopsacheilis, and Naryshkin. 

Tue, 30 Jan 2024

16:00 - 17:00
C2

The infinite Hilbert matrix on spaces of analytic functions

Santeri Miihkinen
(Reading University)
Abstract

The (finite) Hilbert matrix is arguably one of the single most well-known matrices in mathematics. The infinite Hilbert matrix H was introduced by David Hilbert around 120 years ago in connection with his double series theorem. It can be interpreted as a linear operator on spaces of analytic functions by its action on their Taylor coefficients. The boundedness of H on the Hardy spaces Hp for 1 < p < ∞ and Bergman spaces Ap for 2 < p < ∞ was established by Diamantopoulos and Siskakis. The exact value of the operator norm of H acting on the Bergman spaces Ap for 4 ≤ p < ∞ was shown to be π /sin(2π/p) by Dostanic, Jevtic and Vukotic in 2008. The case 2 < p < 4 was an open problem until in 2018 it was shown by Bozin and Karapetrovic that the norm has the same value also on the scale2 < p < 4. In this talk, we introduce some background, review some of the old results, and consider the still partly open problem regarding the value of the norm on weighted Bergman spaces. We also consider a generalised Hilbert matrix operator and its (essential) norm. The talk is partly based on a joint work with Mikael Lindström, David Norrbo, and Niklas Wikman (Åbo Akademi University).
 

Thu, 18 Jan 2024

16:00 - 17:00
C2

Morita equivalence for operator systems

Evgenios Kakariadis
(Newcastle University)
Abstract

In ring theory, Morita equivalence is an invariant for many properties, generalising the isomorphism of commutative rings. A strong Morita equivalence for selfadjoint operator algebras was introduced by Rieffel in the 60s, and works as a correspondence between their representations. In the past 30 years, there has been an interest to develop a similar theory for nonselfadjoint operator algebras and operator spaces with much success. Taking motivation from recent work of Connes and van Suijlekom, we will present a Morita theory for operator systems. We will give equivalent characterizations of Morita equivalence via Morita contexts, bihomomoprhisms and stable isomorphisms, while we will highlight properties that are preserved in this context. Time permitted we will provide applications to rigid systems, function systems and non-commutative graphs. This is joint work with George Eleftherakis and Ivan Todorov.

Tue, 30 Apr 2024

14:00 - 15:00
L5

Unipotent Representations and Mixed Hodge Modules

Lucas Mason-Brown
((Oxford University))
Abstract

One of the oldest open problems in representation theory is to classify the irreducible unitary representations of a semisimple Lie group G_R. Such representations play a fundamental role in harmonic analysis and the Langlands program and arise in physics as the state space of quantum mechanical systems in the presence of G_R-symmetry. Most unitary representations of G_R are realized, via some kind of induction, from unitary representations of proper Levi subgroups. Thus, the major obstacle to understanding the unitary dual of G_R is identifying the "non-induced" unitary representations of G_R. In previous joint work with Losev and Matvieievskyi, we have proposed a general construction of these non-induced representations, which we call "unipotent" representations of G_R. Unfortunately, the methods we employ do not provide a proof that these representations are unitary. In this talk, I will explain how one can apply Saito's theory of mixed Hodge modules to overcome this difficulty, giving a uniform proof of the unitarity of all unipotent representations. This is joint work in progress with Dougal Davis

A transfer principle for branched rough paths
Rossi Ferrucci, E Annales de l'Institut Henri Poincaré, Probabilités et Statistiques
Oxford mathematics at a low ebb? An 1855 dispute over examination results
Hollings, C Annals of Science volume 81 issue 4 563-596 (11 Dec 2023)
Oxford’s History of Mathematics Forum: The First Two Decades
Hollings, C Wilson, R The Mathematical Intelligencer volume 46 issue 2 189-193 (16 Jun 2024)
Approximating higher-order derivative tensors using secant updates
Welzel, K Hauser, R SIAM Journal on Optimization volume 34 issue 1 893 (28 Feb 2024)
Subscribe to