Mon, 12 Feb 2024
15:30
Lecture room 5

Regularity of Random Wavelet Series

Dr Céline Esser
(Mathematics Department, Liège University)
Abstract

This presentation focuses on the study of the regulartiy of random wavelet series. We first study their belonging to certain functional spaces and we compare these results with long-established results related to random Fourier series. Next, we show how the study of random wavelet series leads to precise pointwise regularity properties of processes like fractional Brownian motion. Additionally, we explore how these series helps create Gaussian processes  with random Hölder exponents.

Mon, 05 Feb 2024
15:30
Lecture room 5

Stochastic Games of Intensity Control for (Ticket) Pricing

Professor Ronnie Sircar
(Princeton University)
Abstract

One way to capture both the elastic and stochastic reaction of purchases to price is through a model where sellers control the intensity of a counting process, representing the number of sales thus far. The intensity describes the probabilistic likelihood of a sale, and is a decreasing function of the price a seller sets. A classical model for ticket pricing, which assumes a single seller and infinite time horizon, is by Gallego and van Ryzin (1994) and it has been widely utilized by airlines, for instance. Extending to more realistic settings where there are multiple sellers, with finite inventories, in competition over a finite time horizon is more complicated both mathematically and computationally. We discuss some dynamic games of this type, from static to two player to the associated mean field game, with some numerical and existence-uniqueness results.

Based on works with Andrew Ledvina and with Emre Parmaksiz.

Mon, 22 Jan 2024
15:30
Lecture room 5

Nonparametric generative modeling for time series via Schrödinger bridge

Professor Huyên Pham
(Université Paris Cité )
Abstract

We propose a novel generative model for time series based on Schrödinger bridge (SB) approach. This consists in the entropic interpolation via optimal transport between a reference probability measure on path space and a target measure consistent with the joint data distribution of the time series. The solution is characterized by a stochastic differential equation on finite horizon with a path-dependent drift function, hence respecting  the temporal dynamics of the time series distribution. We  estimate the drift function from data samples by nonparametric, e.g. kernel regression methods,  and the simulation of the SB diffusion  yields new synthetic data samples of the time series. The performance of our generative model is evaluated through a series of numerical experiments.  First, we test with autoregressive models, a GARCH Model, and the example of fractional Brownian motion,  and measure the accuracy of our algorithm with marginal, temporal dependencies metrics, and predictive scores. Next, we use our SB generated synthetic samples for the application to deep hedging on real-data sets. 

Mon, 15 Jan 2024
15:30
Lecture room 5

The Critical 2d Stochastic Heat Flow and other critical SPDEs

Professor Nikolaos Zygouras
(Dept. Mathematics, University of Warwick)
Abstract
Thanks to the theories of Paracontrolled Distributions and Regularity structures we now have a complete theory of  singular SPDEs, which are “sub-critical” in the sense of renormalisation. Recently, there have been efforts to approach the situation of “critical” SPDEs and statistical mechanics models. A first such treatment has been through the study of the two-dimensional stochastic heat equation, which has revealed a certain phase transition and has led to the construction of the novel object called the Critical 2d Stochastic Heat Flow. In this talk we will present some aspects of this model and its construction. We will also present developments relating to other critical SPDEs.
Parts of this talk are based on joint works with Caravenna and Sun and others with Rosati and Gabriel.  
Percolation theories for quantum networks
Meng, X Hu, X Tian, Y Dong, G Lambiotte, R Gao, J Havlin, S Entropy volume 25 issue 11 (20 Nov 2023)
A Schanuel property for exponentially transcendental powers
Bays, M Kirby, J Wilkie, A Bulletin of the London Mathematical Society volume 42 issue 5 917-922 (04 Oct 2010)
Thu, 08 Feb 2024
14:00
Lecture Room 3

From Chebfun3 to RTSMS: A journey into deterministic and randomized Tucker decompositions

Behnam Hashemi
(Leicester University)
Abstract
The Tucker decomposition is a family of representations that break up a given d-dimensional tensor into the multilinear product of a core tensor and a factor matrix along each of the d-modes. It is a useful tool in extracting meaningful insights from complex datasets and has found applications in various fields, including scientific computing, signal processing and machine learning. 
 In this talk we will first focus on the continuous framework and revisit how Tucker decomposition forms the foundation of Chebfun3 for numerical computing with 3D functions and the deterministic algorithm behind Chebfun3. The key insight is that separation of variables achieved via low-rank Tucker decomposition simplifies and speeds up lots of subsequent computations.
 We will then switch to the discrete framework and discuss a new algorithm called RTSMS (randomized Tucker with single-mode sketching). The single-mode sketching aspect of RTSMS allows utilizing simple sketch matrices which are substantially smaller than alternative methods leading to considerable performance gains. Within its least-squares strategy, RTSMS incorporates leverage scores for efficiency with Tikhonov regularization and iterative refinement for stability. RTSMS is demonstrated to be competitive with existing methods, sometimes outperforming them by a large margin.
We illustrate the benefits of Tucker decomposition via MATLAB demos solving problems from global optimization to video compression. RTSMS is joint work with Yuji Nakatsukasa.
Thu, 25 Jan 2024

14:00 - 15:00
Lecture Room 3

Stress and flux-based finite element methods

Fleurianne Bertrand
(Chemnitz University of Technology)
Abstract

This talk explores recent advancements in stress and flux-based finite element methods. It focuses on addressing the limitations of traditional finite elements, in order to describe complex material behavior and engineer new metamaterials.

Stress and flux-based finite element methods are particularly useful in error estimation, laying the groundwork for adaptive refinement strategies. This concept builds upon the hypercircle theorem [1], which states that in a specific energy space, both the exact solution and any admissible stress field lie on a hypercircle. However, the construction of finite element spaces that satisfy admissible states for complex material behavior is not straightforward. It often requires a relaxation of specific properties, especially when dealing with non-symmetric stress tensors [2] or hyperelastic materials.

Alternatively, methods that directly approximate stresses can be employed, offering high accuracy of the stress fields and adherence to physical conservation laws. However, when approximating eigenvalues, this significant benefit for the solution's accuracy implies that the solution operator cannot be compact. To address this, the solution operator must be confined to a subset of the solution that excludes the stresses. Yet, due to compatibility conditions, the trial space for the other solution components typically does not yield the desired accuracy. The second part of this talk will therefore explore the Least-Squares method as a remedy to these challenges [3].

To conclude this talk, we will emphasize the integration of those methods within global solution strategies, with a particular focus on the challenges regarding model order reduction methods [4].

 

[1] W. Prager, J. Synge. Approximations in elasticity based on the concept of function space.

Quarterly of Applied Mathematics 5(3), 1947.

[2] FB, K. Bernhard, M. Moldenhauer, G. Starke. Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity, Numerical Methods for Partial Differential Equations 37(4), 2021.

[3] FB, D. Boffi. First order least-squares formulations for eigenvalue problems, IMA Journal of Numerical Analysis 42(2), 2023.

[4] FB, D. Boffi, A. Halim. A reduced order model for the finite element approximation of eigenvalue problems,Computer Methods in Applied Mechanics and Engineering 404, 2023.

 

Thu, 29 Feb 2024

14:00 - 15:00
Lecture Room 3

On the use of "conventional" unconstrained minimization solvers for training regression problems in scientific machine learning

Stefano Zampini
(King Abdullah University of Science and Technology (KAUST))
Abstract

In recent years, we have witnessed the emergence of scientific machine learning as a data-driven tool for the analysis, by means of deep-learning techniques, of data produced by computational science and engineering applications.  At the core of these methods is the supervised training algorithm to learn the neural network realization, a highly non-convex optimization problem that is usually solved using stochastic gradient methods.

However, distinct from deep-learning practice, scientific machine-learning training problems feature a much larger volume of smooth data and better characterizations of the empirical risk functions, which make them suited for conventional solvers for unconstrained optimization.

In this talk, we empirically demonstrate the superior efficacy of a trust region method based on the Gauss-Newton approximation of the Hessian in improving the generalization errors arising from regression tasks when learning surrogate models for a wide range of scientific machine-learning techniques and test cases. All the conventional solvers tested, including L-BFGS and inexact Newton with line-search, compare favorably, either in terms of cost or accuracy, with the adaptive first-order methods used to validate the surrogate models.

Tue, 28 Nov 2023

16:00 - 17:00
L1

Euclidean Ramsey Theory

Imre Leader
(University of Cambridge)
Abstract

Euclidean Ramsey Theory is a natural multidimensional version of Ramsey Theory. A subset of Euclidean space is called Ramsey if, for any $k$, whenever we partition Euclidean space of sufficiently high dimension into $k$ classes, one class much contain a congruent copy of our subset. It is still unknown which sets are Ramsey. We will discuss background on this and then proceed to some recent results.

Subscribe to