Mon, 27 Nov 2023
16:00
C1

On two variations of Mazur's deformation functor

Simon Alonso
(ENS de Lyon)
Abstract

In 1989, Mazur defined the deformation functor associated to a residual Galois representation, which played an important role in the proof by Wiles of the modularity theorem. This was used as a basis over which many mathematicians constructed variations both to further specify it or to expand the contexts where it can be applied. These variations proved to be powerful tools to obtain many strong theorems, in particular of modular nature. In this talk I will give an overview of the deformation theory of Galois representations and describe two variants of Mazur's functor that allow one to properly deform reducible residual representations (which is one of the shortcomings of Mazur's original functor). Namely, I will present the theory of determinant-laws initiated by Bellaïche-Chenevier on the one hand, and an idea developed by Calegari-Emerton on the other.
If time permits, I will also describe results that seem to indicate a possible comparison between the two seemingly unrelated constructions.

Tue, 14 Nov 2023

16:00 - 17:00
C2

Admissible KMS bundles on classifiable C$^*$-algebras

Robert Neagu
Abstract

Named after mathematical physicists Kubo, Martin, and Schwinger, KMS states are a special class of states on any C$^*$-algebra admitting a continuous action of the real numbers. Unlike in the case of von Neumann algebras, where each modular flow has a unique KMS state, the collection of KMS states for a given flow on a C$^*$-algebra can be quite intricate. In this talk, I will explain what abstract properties these simplices have and show how one can realise such a simplex on various classes of simple C$^*$-algebras.

Turing pattern formation in reaction-cross-diffusion systems with a bilayer geometry
Diaz, A Krause, A Maini, P Gaffney, E Seirin-Lee, S Bulletin of Mathematical Biology volume 86 issue 2 (03 Jan 2024)
Motility-induced phase separation mediated by bacterial quorum sensing
Ridgway, W Dalwadi, M Pearce, P Chapman, S Physical Review Letters
Motility-Induced Phase Separation Mediated by Bacterial Quorum Sensing.
Ridgway, W Dalwadi, M Pearce, P Chapman, S Physical review letters volume 131 issue 22 228302- (Dec 2023)
Tue, 23 Jan 2024

14:00 - 15:00
L5

On a quantitative version of Harish-Chandra's regularity theorem and singularities of representations

Yotam Hendel
(KU Leuven)
Abstract

Let G be a reductive group defined over a local field of characteristic 0 (real or p-adic). By Harish-Chandra’s regularity theorem, the character Θ_π of an irreducible representation π of G is given by a locally integrable function f_π on G. It turns out that f_π has even better integrability properties, namely, it is locally L^{1+r}-integrable for some r>0. This gives rise to a new singularity invariant of representations \e_π by considering the largest such r.

We explore \e_π, show it is bounded below only in terms of the group G, and calculate it in the case of a p-adic GL(n). To do so, we relate \e_π to the integrability of Fourier transforms of nilpotent orbital integrals appearing in the local character expansion of Θ_π. As a main technical tool, we use explicit resolutions of singularities of certain hyperplane arrangements. We obtain bounds on the multiplicities of K-types in irreducible representations of G for a p-adic G and a compact open subgroup K.

Based on a joint work with Itay Glazer and Julia Gordon.

Thu, 18 Jan 2024

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

A preconditioner with low-rank corrections based on the Bregman divergence

Andreas Bock
(Danish Technical University)
Abstract

We present a general framework for preconditioning Hermitian positive definite linear systems based on the Bregman log determinant divergence. This divergence provides a measure of discrepancy between a preconditioner and a target matrix, giving rise to

the study of preconditioners given as the sum of a Hermitian positive definite matrix plus a low-rank correction. We describe under which conditions the preconditioner minimises the $\ell^2$ condition number of the preconditioned matrix, and obtain the low-rank 

correction via a truncated singular value decomposition (TSVD). Numerical results from variational data assimilation (4D-VAR) support our theoretical results.

 

We also apply the framework to approximate factorisation preconditioners with a low-rank correction (e.g. incomplete Cholesky plus low-rank). In such cases, the approximate factorisation error is typically indefinite, and the low-rank correction described by the Bregman divergence is generally different from one obtained as a TSVD. We compare these two truncations in terms of convergence of the preconditioned conjugate gradient method (PCG), and show numerous examples where PCG converges to a small tolerance using the proposed preconditioner, whereas PCG using a TSVD-based preconditioner fails. We also consider matrices arising from interior point methods for linear programming that do not admit such an incomplete factorisation by default, and present a robust incomplete Cholesky preconditioner based on the proposed methodology.

The talk is based on papers with Martin S. Andersen (DTU).

 

Fri, 10 Nov 2023
12:00
L3

Irreducible Poincare representations on Carrollian fields and representations of E_11

Peter West
(Kings College Lonson )
Abstract

I will show that the massless irreducible representations of the Poincare group are precisely Corrolian field living on I^+. I will also show that the analogous massless irreducible representation of E11 are just the degrees of freedom of maximal supergravity. Finally I will speculate how spacetime could emerge from an underlying fundamental theory.

Thu, 30 Nov 2023
14:00
N3.12

Machine Learning in HEP-TH

Dewi Gould
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Subscribe to