Tue, 07 Nov 2023

16:00 - 17:00
L6

Universal universality breaking for random partitions

Harriet Walsh
(University of Angers)
Abstract

I will talk about a family of measures on partitions (specifically, a case of Okounkov's Schur measures) which are in one-to-one correspondence with models of random unitary matrices and lattice fermions. Under these measures, as the expected size of a partition goes to infinity, the first part of a random partition generically exhibits the same universal asymptotic fluctuations as the largest eigenvalue of a GUE random Hermitian matrix. First, I'll describe how we can tune these measures to exhibit new edge fluctuations at a smaller scale, which naturally generalise the GUE edge behaviour. These new fluctuations are universal, having previously been found for trapped fermions, and when a measure is tuned to have them, the corresponding unitary matrix model is "multicritical". Then, I'll describe how our measures can escape these more general universality classes, when tuned to have several cuts in a certain "Fermi sea". In this case, the breakdown in universality arises from an oscillation phenomenon previously observed in multi-cut Hermitian matrix models. Moreover, we have a one-to-one correspondence with multi-cut unitary matrix models. This is partly based on joint work with Dan Betea and Jérémie Bouttier. 

Tue, 28 Nov 2023

14:00 - 15:00
L5

Hecke algebras for p-adic groups and explicit Local Langlands Correspondence

Yujie Xu
(Columbia University (New York))
Abstract

I will talk about several results on Hecke algebras attached to Bernstein blocks of (arbitrary) reductive p-adic groups, where we construct a local Langlands correspondence for these Bernstein blocks. Our techniques draw inspirations from the foundational works of Deligne, Kazhdan and Lusztig. 

As an application, we prove the Local Langlands Conjecture for G_2, which is the first known case in literature of LLC for exceptional groups. Our correspondence satisfies an expected property on cuspidal support, which is compatible with the generalized Springer correspondence, along with a list of characterizing properties including the stabilization of character sums, formal degree property etc. In particular, we obtain (not necessarily unipotent) "mixed" L-packets containing "F-singular" supercuspidals and non-supercuspidals. Such "mixed" L-packets had been elusive up until this point and very little was known prior to our work. I will give explicit examples of such mixed L-packets in terms of Deligne-Lusztig theory and Kazhdan-Lusztig parametrization. 

If time permits, I will explain how to pin down certain choices in the construction of the correspondence using stability of L-packets; one key input is a homogeneity result due to Waldspurger and DeBacker. Moreover, I will mention how to adapt our general strategy to construct explicit LLC for other reductive groups, such as GSp(4), Sp(4), etc. Such explicit description of the L-packets has been useful in number-theoretic applications, e.g. modularity lifting questions as in the recent work of Whitmore. 

Some parts of this talk are based on my joint work with Aubert, and some other parts are based on my joint work with Suzuki. 
 

Fri, 24 Nov 2023

12:30 - 13:30

Smooth representations and n coherence of Iwasawa algebras in relations

Vincenzo Di Bartolo
(University of Cambridge)
Abstract

In the context of categorical Langlands, there are many ways in which one could define the notion of n-finitely presented smooth representation. We will explore and compare two different definitions, relating them with the notion of n-coherence for the corresponding Iwasawa ring.

Early prediction of lithium-ion cell degradation trajectories using signatures of voltage curves up to 4-minute sub-sampling rates
Ibraheem, R Wu, Y Lyons, T dos Reis, G Applied Energy volume 352 (28 Sep 2023)
Fri, 03 Nov 2023
12:00
L3

Inversions, Shadows, and Extrapolate Dictionaries in CCFT

Sabrina Pasterski
(Perimeter Institute)
Abstract

The Celestial Holography program encompasses recent efforts to understand the flat space hologram in terms of a CFT living on the celestial sphere. Here we have fun relating various extrapolate dictionaries in CCFT and examining tools we can apply when perturbing around a 4D CFT in the bulk.

 

 

Tue, 21 Nov 2023

16:00 - 17:00
L6

Beyond i.i.d. weights: sparse and low-rank deep Neural Networks are also Gaussian Processes

Thiziri Nait Saada
(Mathematical Institute (University of Oxford))
Abstract

The infinitely wide neural network has been proven a useful and manageable mathematical model that enables the understanding of many phenomena appearing in deep learning. One example is the convergence of random deep networks to Gaussian processes that enables a rigorous analysis of the way the choice of activation function and network weights impacts the training dynamics. In this paper, we extend the seminal proof of Matthews (2018) to a larger class of initial weight distributions (which we call "pseudo i.i.d."), including the established cases of i.i.d. and orthogonal weights, as well as the emerging low-rank and structured sparse settings celebrated for their computational speed-up benefits. We show that fully-connected and convolutional networks initialized with pseudo i.i.d. distributions are all effectively equivalent up to their variance. Using our results, one can identify the Edge-of-Chaos for a broader class of neural networks and tune them at criticality in order to enhance their training.

Tue, 24 Oct 2023

16:00 - 17:00
L6

Correlations of the Riemann zeta function

Michael Curran
(University of Oxford)
Abstract

Abstract: Shifted moments of the Riemann zeta function, introduced by Chandee, are natural generalizations of the moments of zeta. While the moments of zeta capture large values of zeta, the shifted moments also capture how the values of zeta are correlated along the half line. I will describe recent work giving sharp bounds for shifted moments assuming the Riemann hypothesis, improving previous work of Chandee and Ng, Shen, and Wong. I will also discuss some unconditional results about shifted moments with small exponents.

Tue, 14 Nov 2023
11:00
Lecture Room 4

DPhil Presentations

Sarah-Jean Meyer, Satoshi Hayakawa
(Mathematical Institute (University of Oxford))
Abstract

As part of the internal seminar schedule for Stochastic Analysis for this coming term, DPhil students have been invited to present on their works to date. Student talks are 20 minutes, which includes question and answer time. 

 

Students presenting are:

Sara-Jean Meyer, supervisor Massimiliano Gubinelli

Satoshi Hayakawa, supervisor Harald Oberhauser 

Subscribe to