14:15
Vertex algebras from divisors on Calabi-Yau threefolds
Abstract
We construct vertex algebras associated to divisors $S$ in toric Calabi-Yau threefolds $Y$, satisfying conjectures of Gaiotto-Rapcak and Feigin-Gukov, and in particular such that the characters of these algebras are given by a local analogue of the Vafa-Witten partition function of the underlying reduced subvariety $S^{red}$. These results are part of a broader program to establish a dictionary between the enumerative geometry of coherent sheaves on surfaces and Calabi-Yau threefolds, and the representation theory of vertex algebras and affine Yangian-type quantum groups.
15:30
Spontaneous oscillations in a pure excitatory mean field networks of neurons
Abstract
We consider a model of network of interacting neurons based on jump processes. Briefly, the membrane potential $V^i_t$ of each individual neuron evolves according to a one-dimensional ODE. Neuron $i$ spikes at rate which only depends on its membrane potential, $f(V^i_t)$. After a spike, $V^i_t$ is reset to a fixed value $V^{\mathrm{rest}}$. Simultaneously, the membrane potentials of any (post-synaptic) neuron $j$ connected to the neuron $i$ receives a kick of value $J^{i,j}$.
We study the limit (mean-field) equation obtained where the number of neurons goes to infinity. In this talk, we describe the long time behaviour of the solution. Depending on the intensity of the interactions, we observe convergence of the distribution to a unique invariant measure (small interactions) or we characterize the occurrence of spontaneous oscillations for interactions in the neighbourhood of critical values.
14:15
L-infinity liftings of semiregularity maps and deformations
Abstract
After a brief introduction to the semiregularity maps of Severi, Kodaira and Spencer, and Bloch, I will focus on the Buchweitz-Flenner semiregularity map and on its importance for the deformation theory of coherent sheaves.
The subject of this talk is the construction of a lifting of each component of the Buchweitz-Flenner semiregularity map to an L-infinity morphism between DG-Lie algebras, which allows to interpret components of the semiregularity map as obstruction maps of morphisms of deformation functors.
As a consequence, we obtain that the semiregularity map annihilates all obstructions to deformations of a coherent sheaf on a complex projective manifold. Based on a joint work with R. Bandiera and M. Manetti.