Tue, 16 May 2023

16:00 - 17:00
L5

Some extensions of the Katznelson-Tzafriri theorem

Charles Batty
(University of Oxford)
Abstract

In 1986, Katznelson and Tzafriri proved that, if $T$ is a power-bounded operator on a Banach space $X$, and the spectrum of $T$ meets the unit circle only at 1, then $\|T^n(I-T)\| \to 0$ as $n\to\infty$. Actually, they went further and proved that $\|T^nf(T)\| \to 0$ if $T$ and $f$ satisfy certain conditions. Soon afterward, analogous results were obtained for bounded $C_0$-semigroups $(T(t))_{t\ge0}$. Further extensions and variants were proved later. I will speak about several extensions to the Katznelson-Tzafriri theorem(s), including in particular a recent result(s) obtained by David Seifert and myself.

Tue, 09 May 2023

16:00 - 17:00
C1

Wreath-like product groups and rigidity of their von Neumann algebras

Adrian Ioana
(UC San Diego)
Abstract

Wreath-like products are a new class of groups, which are close relatives of the classical wreath products. Examples of wreath-like product groups arise from every non-elementary hyperbolic groups by taking suitable quotients. As a consequence, unlike classical wreath products, many wreath-like products have Kazhdan's property (T). 

I will present several rigidity results for von Neumann algebras of wreath-like product groups. We show that any group G in a natural family of wreath-like products with property (T) is W*-superrigid: the group von Neumann algebra L(G) remembers the isomorphism class of G. This provides the first examples of W*-superrigid groups with property (T). For a wider class wreath-like products with property (T), we show that any isomorphism of their group von Neumann algebras arises from an isomorphism of the groups. As an application, we prove that any countable group can be realized as the outer automorphism group of L(G), for an icc property (T) group G. These results are joint with Ionut Chifan, Denis Osin and Bin Sun.  

Time permitting, I will mention an additional application of wreath-like products obtained in joint work with Ionut Chifan and Daniel Drimbe, and showing that any separable II_1 factor is contained in one with property (T). This provides an operator algebraic counterpart of the group theoretic fact that every countable group is contained in one with property (T).

Thu, 04 May 2023

16:00 - 17:00
C1

Superrigidity in von Neumann algebras

Daniel Drimbe
(KU Leuven)
Abstract

The pioneering work of Murray and von Neumann shows that any countable discrete group G gives rise in a canonical way to a group von Neumann algebra, denoted L(G). A main theme in operator algebras is to classify group von Neumann algebras, and hence, to understand how much information does L(G) remember of the underlying group G. In the amenable case, the classification problem is completed by the work of Connes from 1970s asserting that for all infinite conjugacy classes amenable groups, their von Neumann algebras are isomorphic.

In sharp contrast, in the non-amenable case, Popa's deformation rigidity/theory (2001) has led to the discovery of several instances when various properties of the group G are remembered by L(G). The goal of this talk is to survey some recent progress in this direction.

Tue, 02 May 2023

16:00 - 17:00
C1

Amenable group actions on C*-algebras and the weak containment problem

Siegfried Echterhoff
(University of Münster)
Abstract

The notion of amenable actions by discrete groups on C*-algebras has been introduced by Claire Amantharaman-Delaroche more than thirty years ago, and has become a well understood theory with many applications. So it is somewhat surprising that an established theory of amenable actions by general locally compact groups has been missed until 2020. We now present a theory which extends the discrete case and unifies several notions of approximation properties of actions which have been discussed in the literature. We also present far reaching results towards the weak containment problem which asks wether an action $\alpha:G\to \Aut(A)$ is amenable if and only if the maximal and reduced crossed products coincide.

In this lecture we report on joint work with Alcides Buss and Rufus Willett.

Tue, 25 Apr 2023

16:00 - 17:00
C1

Anomalous symmetries and invariants of operator algebras

Sergio Giron Pacheco
(University of Oxford)
Abstract

An anomalous symmetry of an operator algebra A is a mapping from a group G into the automorphism group of A which is multiplicative up to inner automorphisms. To any anomalous symmetry, there is an associated cohomology invariant in H^3(G,T). In the case that A is the Hyperfinite II_1 factor R and G is amenable, the associated cohomology invariant is shown to be a complete invariant for anomalous actions on R by the work of Connes, Jones, and Ocneanu.

In this talk, I will introduce anomalous actions from the basics discussing examples and the history of their study in the literature. I will then discuss two obstructions to possible cohomology invariants of anomalous actions on simple C*-algebras which arise from considering K-theoretic invariants of the algebras. One of the obstructions will be of algebraic flavour and the other will be of topological flavour. Finally, I will discuss the classification question for certain classes of anomalous actions.

Tue, 06 Jun 2023

14:00 - 15:00
L6

The wavefront set of unipotent representations with real infinitesimal character

Emile Okada
(National University of Singapore)
Abstract

For a reductive group defined over a p-adic field, the wavefront set is an invariant of an admissible representations which roughly speaking measures the direction of the singularities of the character near the identity. Studied first by Roger Howe in the 70s, the wavefront set has important connections to Arthur packets, and has been the subject of thorough investigation in the intervening years. One of main lines of inquiry is to determine the relation between the wavefront set and the L-parameter of a representation. In this talk we present new results answering this question for unipotent representations with real infinitesimal character. The results are joint with Dan Ciubotaru and Lucas Mason-Brown.

Tue, 13 Jun 2023

14:00 - 15:00
L4

Correspondences of affine Hecke algebras in the Langlands program

Anne-Marie Aubert
((Mathematics Institute of Jussieu-Paris Left Bank, Sorbonne University ))
Abstract

The irreducible smooth representations of p-adic reductive groups and the enhanced Langlands parameters of these latter can both be partitioned into series indexed by "cuspidal data". On the representation side, cuspidality refers to supercuspidal representations of Levi subgroups, while on the Galois side, it refers to "cuspidal unipotent pairs", as introduced by Lusztig, in certain subgroups of the Langlands dual groups.

In addition, on both sides, the elements in a given series are in bijection with the simple modules of a generalized affine Hecke algebra. 

The cuspidal data on one side are expected to be in bijection with the cuspidal data on the other side. We will formulate conditions on this bijection that will guarantee the existence of a bijection between the simple modules of the attached generalized affine Hecke algebras. For the exceptional group of type G_2 and for all pure inner forms of quasi-split classical groups, the Hecke algebras are actually isomorphic.

Tue, 30 May 2023

14:00 - 15:00
L6

The Jacobson-Morozov Theorem in positive characteristic

Rachel Pengelly
(Birmingham University)
Abstract

Let K be an algebraically closed field. Given three elements a Lie algebra over K, we say that these elements form an sl_2-triple if they generate a subalgebra which is a homomorphic image of sl_2(K). In characteristic 0, the Jacobson-Morozov theorem provides a bijection between the orbits of nilpotent elements of the Lie algebra and the orbits of sl_2-triples. In this talk I will discuss the progress made in extending this result to fields of characteristic p, and discuss results for both the classical and exceptional Lie algebras. 

Tue, 23 May 2023

14:00 - 15:00
L6

Endoscopic lifting and cohomological induction

Lucas Mason-Brown
Abstract

Let G and H be real reductive groups. To any L-homomorphism e: H^L \to G^L one can associate a map e_* from virtual representations of H to virtual representations of G. This map was predicted by Langlands and defined (in the real case) by Adams, Barbasch, and Vogan. Without further restrictions on e, this map can be very poorly behaved. A special case in which e_* exhibits especially nice behavior is the case when H is an endoscopic group. In this talk, I will introduce a more general class of L-homomorphisms that exhibit similar behavior to the endoscopic case. I will explain how this more general notion of endoscopic lifting relates to the theory of cohomological induction. I will also explain how this generalized notion of endoscopic lifting can be used to prove the unitarity of many Arthur packets. This is based on joint work with Jeffrey Adams and David Vogan.

Subscribe to