A note on the rational homological dimension of lattices in positive characteristic
Hughes, S Glasgow Mathematical Journal volume 65 issue 1 138-140 (10 Jun 2022)
Tue, 03 May 2022

12:00 - 13:00
L4

Burns holography

Atul Sharma
((Oxford University))
Abstract

Holography in asymptotically flat spaces is one of the most coveted goals of modern mathematical physics. In this talk, I will motivate a novel holographic description of self-dual SO(8) Yang-Mills + self-dual conformal gravity on a Euclidean signature, asymptotically flat background called Burns space. The holographic dual lives on a stack of D1-branes wrapping a CP^1 cycle in the twistor space of R^4 and is given by a gauged beta-gamma system with SO(8) flavor and a pair of defects at the north and south poles. It provides the first example of a stringy realization of (asymptotically) flat holography and is a Euclidean signature variant of celestial holography. This is based on ongoing work with Kevin Costello and Natalie Paquette.

Fri, 06 May 2022

16:00 - 17:00
L5

On-shell Correlators and Color-Kinematics Duality in Curved Spacetimes

Allic Sivaramakrishnan
(University of Kentucky)
Further Information

It is also possible to join online via Zoom.

Abstract

We define a perturbatively calculable quantity—the on-shell correlator—which furnishes a unified description of particle dynamics in curved spacetime. Specializing to the case of flat and anti-de Sitter space, on-shell correlators coincide precisely with on-shell scattering amplitudes and boundary correlators, respectively. Remarkably, we find that symmetric manifolds admit a generalization of on-shell kinematics in which the corresponding momenta are literally the isometry generators of the spacetime acting on the external kinematic data. These isometric momenta are intrinsically non-commutative but exhibit on-shell conditions that are identical to those of flat space, thus providing a common language for computing and representing on-shell correlators which is agnostic about the underlying geometry. 

As applications of these tools, we compute n-point scalar correlators in AdS in terms of isometric momenta. In many cases, the results are direct lifts of flat-space expressions. We provide field-theoretic proofs of color-kinematics duality and BCJ relations in AdS at n-points in biadjoint scalar theory and the nonlinear sigma model. We discuss possible extensions to generic curved spacetimes without symmetry.

Non-Invertible Higher-Categorical Symmetries
Bhardwaj, L Bottini, L Schafer-Nameki, S Tiwari, A (13 Apr 2022)
Bounded Functional Calculi for Unbounded Operators
Batty, C Gomilko, A Tomilov, Y Operators, Semigroups, Algebras and Function Theory volume 292 (07 Dec 2023)
Thu, 02 Jun 2022

14:00 - 15:00
Virtual

Balanced truncation for Bayesian inference

Elizabeth Qian
(Caltech)
Abstract

We consider the Bayesian inverse problem of inferring the initial condition of a linear dynamical system from noisy output measurements taken after the initial time. In practical applications, the large dimension of the dynamical system state poses a computational obstacle to computing the exact posterior distribution. Balanced truncation is a system-theoretic method for model reduction which obtains an efficient reduced-dimension dynamical system by projecting the system operators onto state directions which simultaneously maximize energies defined by reachability and observability Gramians. We show that in our inference setting, the prior covariance and Fisher information matrices can be naturally interpreted as reachability and observability Gramians, respectively. We use these connections to propose a balancing approach to model reduction for the inference setting. The resulting reduced model then inherits stability properties and error bounds from system theory, and yields an optimal posterior covariance approximation. 

Tue, 16 Jun 2020

11:30 - 12:45
L6

(Postponed)

Angus Macintyre
(Queen Mary University of London)
Abstract

TBA

Thu, 20 Oct 2022

15:00 - 16:00
L5

An unbounded version of Zarankiewicz's problem

Pantelis Eleftheriou
(Leeds University)
Abstract

Zarankiewicz's problem for hypergraphs asks for upper bounds on the number of edges of a hypergraph that has no complete sub-hypergraphs of a given size. Let M be an o-minimal structure. Basit-Chernikov-Starchenko-Tao-Tran (2021) proved that the following are equivalent:

(1) "linear Zarankiewicz's bounds" hold for hypergraphs whose edge relation is induced by a fixed relation definable in M


(2) M does not define an infinite field.

We prove that the following are equivalent:

(1') linear Zarankiewicz bounds hold for sufficiently "distant" hypergraphs whose edge relation is induced by a fixed relation definable in M


(2') M does not define a full field (that is, one whose domain is the whole universe of M).

This is joint work (in progress) with Aris Papadopoulos.

Thu, 16 Jun 2022

14:00 - 15:00
L5

Recent results on finite element methods for incompressible flow at high Reynolds number

Erik Burman
(University College London)
Abstract

The design and analysis of finite element methods for high Reynolds flow remains a challenging task, not least because of the difficulties associated with turbulence. In this talk we will first revisit some theoretical results on interior penalty methods using equal order interpolation for smooth solutions of the Navier-Stokes’ equations at high Reynolds number and show some recent computational results for turbulent flows.

Then we will focus on so called pressure robust methods, i.e. methods where the smoothness of the pressure does not affect the upper bound of error estimates for the velocity of the Stokes’ system. We will discuss how convection can be stabilized for such methods in the high Reynolds regime and, for the lowest order case, show an interesting connection to turbulence modelling.

 

Thu, 02 Jun 2022
00:00

(Postponed)

Tomás Ibarlucía
(Université Paris Cité)
Abstract

We call affine logic the fragment of continuous logic in which the connectives are limited to linear combinations and the constants (but quantification is allowed, in the usual continuous form). This fragment has been introduced and studied by S.M. Bagheri, the first to observe that this is the appropriate framework to consider convex combinations of metric structures and, more generally, ultrameans, i.e., ultraproducts in which the ultrafilter is replaced by a finitely additive probability measure. Bagheri has shown that many fundamental results of continuous logic hold in affine logic in an appropriate form, including Łoś's theorem, the compactness theorem, and the Keisler--Shelah isomorphism theorem.

In affine logic, type spaces are compact convex sets. In this talk I will report on an ongoing work with I. Ben Yaacov and T. Tsankov, in which we initiate the study of extremal models in affine logic, i.e., those that only realize extreme types.

 

Subscribe to