Tue, 01 May 2018

16:00 - 17:00
L5

Model theory of approximations and the calculus of oscillating integrals

Boris Zilber
(Oxford University)
Abstract

I will present a variation of positive model theory which addresses the issues of approximations of conventional geometric structures by sequences of Zariski structures as well as approximation by sequences of finite structures. In particular I am interested in applications to quantum mechanics.

I will report on a progress in defining and calculating oscillating in- tegrals of importance in quantum physics. This is based on calculating Gauss sums of order higher or equal to 2 over rings Z/mfor very specific m

Fri, 24 Nov 2017
16:00
L1

North meets South Colloquium

Richard Wade and Andrey Kormilitzin
Abstract

Richard Wade:   Classifying spaces, automorphisms, and right-angled Artin groups 

Right-angled Artin groups (otherwise known as partially commutative groups, or graph groups), interpolate between free abelian groups and free groups. These groups have seen a lot of attention recently, much of this due to some surprising links to the world of hyperbolic 3-manifolds.We will look at classifying spaces for such groups and their associated automorphism groups. These spaces are useful as they give a topological way to understand algebraic invariants of groups. This leads us to study some beautiful mathematical objects: deformation spaces of tori and trees. We will look at some recent results that aim to bridge the gap between these two families of spaces.
 
Andrey Kormilitzin:   Learning from electronic health records using the theory of rough paths

In this talk, we bring the theory of rough paths to the study of non-parametric statistics on streamed data and particularly to the problem of regression and classification, where the input variable is a stream of information, and the dependent response is also (potentially) a path or a stream.  We informally explain how a certain graded feature set of a stream, known in the rough path literature as the signature of the path, has a universality that allows one to characterise the functional relationship summarising the conditional distribution of the dependent response. At the same time this feature set allows explicit computational approaches through machine learning algorithms.

Finally, the signature-based modelling can be applied to some real-world problems in medicine, in particular in mental health and gastro-enterology.

Fri, 10 Nov 2017
16:00
L1

North meets South Colloquium

Laura Capuano and Noemi Picco
(Oxford)
Abstract

Laura Capuano's talk 'Pell equations and continued fractions in number theory'

The classical Pell equation has an extraordinary long history and it is very useful in many different areas of number theory. For example, they given a way to write a prime congruent to 1 modulo 4 as a sum of two squares, or they can also be used to break RSA excryption when the decription key is too small. In this talk, I will present some properties of this wonderful equation and its relation with continued fractions. I will also treat the case of Pell equations in other contexts, such as the ring of polynomials, showing the differences with the classical case. 

Noemi Picco's talk 'Cortical neurogenesis: how humans (and mathematicians) can do more than macaque, with less'

The cerebral cortex is perhaps the crowning achievement of evolution and is the region of the brain that distinguishes us from other species. Studying the developmental programmes that generate cortices of different sizes and neuron counts, is the key to understanding both brain evolution and disease. I will show what mathematical modeling has to say about cortex evolution, when data resolution is poor. I will then discuss why humans are so special in the way they create their cortex, and how we are just like everybody else in many other aspects of brain development.

Mon, 06 Nov 2017
14:15
L5

An obstruction to planarity of contact structures

Marco Golla
(Oxford)
Abstract


We give new obstructions to the existence of planar open books on contact structures, in terms of the homology of their fillings. I will talk about applications to links of surface singularities, Seifert fibred spaces, and integer homology spheres. No prior knowledge of contact or symplectic topology will be assumed. This is joint work with Paolo Ghiggini and Olga Plamenevskaya.
 

Thu, 23 Nov 2017

16:30 - 17:30
L1

Bendotaxis of Wetting and Non-wetting drops

Alexander Bradley
(University of Oxford)
Abstract

It is thought that the hairy legs of water walking arthropods are able to remain clean and dry because the flexibility of the hairs spontaneously moves drops off the hairs. We present a mathematical model of this bending-induced motion, or bendotaxis, and study how it performs for wetting and non-wetting drops. Crucially, we show that both wetting and non-wetting droplets move in the same direction (using physical arguments and numerical solutions). This suggests that a surface covered in elastic filaments (such as the hairy leg of insects) may be able to universally self-clean. To quantify the efficiency of this effect, we explore the conditions under which drops leave the structure by ‘spreading’ rather than translating and also how long it takes to do so.

Tue, 21 Nov 2017

12:00 - 13:00
C3

Complex Contagions with Timers

Se-Wook Oh
(University of Oxford)
Abstract

A great deal of effort has gone into trying to model social influence --- including the spread of behavior, norms, and ideas --- on networks. Most models of social influence tend to assume that individuals react to changes in the states of their neighbors without any time delay, but this is often not true in social contexts, where (for various reasons) different agents can have different response times. To examine such situations, we introduce the idea of a timer into threshold models of social influence. The presence of timers on nodes delays the adoption --- i.e., change of state --- of each agent, which in turn delays the adoptions of its neighbors. With a homogeneous-distributed timer, in which all nodes exhibit the same amount of delay, adoption delays are also homogeneous, so the adoption order of nodes remains the same. However, heterogeneously-distributed timers can change the adoption order of nodes and hence the "adoption paths" through which state changes spread in a network. Using a threshold model of social contagions, we illustrate that heterogeneous timers can either accelerate or decelerate the spread of adoptions compared to an analogous situation with homogeneous timers, and we investigate the relationship of such acceleration or deceleration with respect to timer distribution and network structure. We derive an analytical approximation for the temporal evolution of the fraction of adopters by modifying a pair approximation of the Watts threshold model, and we find good agreement with numerical computations. We also examine our new timer model on networks constructed from empirical data.

Link to arxiv paper: https://arxiv.org/abs/1706.04252

Tue, 14 Nov 2017

12:00 - 13:00
C3

The Temporal Event Graph

Andrew Mellor
(University of Oxford)
Abstract

Temporal networks are increasingly being used to model the interactions of complex systems. 
Most studies require the temporal aggregation of edges (or events) into discrete time steps to perform analysis.
In this article we describe a static, behavioural representation of a temporal network, the temporal event graph (TEG).
The TEG describes the temporal network in terms of both inter-event time and two-event temporal motifs.
By considering the distributions of these quantities in unison we provide a new method to characterise the behaviour of individuals and collectives in temporal networks as well as providing a natural decomposition of the network.
We illustrate the utility of the TEG by providing examples on both synthetic and real temporal networks.

Tue, 07 Nov 2017

12:00 - 13:00
C3

Optimal modularity maximisation in multilayer networks

Roxana Pamfil
(University of Oxford)
Abstract

Identifying clusters or "communities" of densely connected nodes in networks is an active area of research, with relevance to many applications. Recent advances in the field have focused especially on temporal, multiplex, and other kinds of multilayer networks.

One method for detecting communities in multilayer networks is to maximise a generalised version of an objective function known as modularity. Writing down multilayer modularity requires the specification of two types of resolution parameters, and choosing appropriate values is crucial for uncovering meaningful community structure. In the simplest case, there are just two parameters, one controlling the sizes of detected communities, and the other influencing how much communities change from layer to layer. By establishing an equivalence between modularity optimisation and a multilayer maximum-likelihood approach to community detection, we are able to determine statistically optimal values for these two parameters. 

When applied to existing multilayer benchmarks, our optimized approach performs significantly better than using parameter choices guided by heuristics. We also apply the method to supermarket data, revealing changes in consumer behaviour over time.

Subscribe to