Tue, 16 May 2017
14:30
L6

Some Extremal Results on Cycles in Hypergraphs

Tao Jiang
(Miami University)
Abstract

Many extremal results on cycles use what may be called BFS method, where a breath first search tree is used as a skeleton to build desired structures. A well-known example is the Bondy-Simonovits theorem that every n-vertex graph with more than 100kn^{1+1/k} edges contains an even cycle of length 2k. The standard BFS method, however, is not easily applicable for supersaturation problems where one wishes to show the existence of many copies of a given  subgraph. The method is also not easily applicable in the hypergraph setting.

In this talk, we focus on some variants of the standard BFS method. We use one of these in conjunction with some useful general reduction theorems that we develop to establish the supersaturation of loose (linear) even cycles in linear hypergraphs. This extends Simonovits' supersaturation theorem on even cycles in graphs. This is joint work with Liana Yepremyan.

If time allows, we will also discuss another variant (joint with Jie Ma) used in the study of Berge cycles of consecutive lengths in hypergraphs.

Tue, 06 Jun 2017
14:30
L6

Monochromatic Infinite Sumsets

Paul Russell
(Cambridge)
Abstract

It is well known that there is a finite colouring of the natural numbers such that there is no infinite set X with X+X (the pairwise sums from X, allowing repetition) monochromatic. It is easy to extend this to the rationals. Hindman, Leader and Strauss showed that there is also such a colouring of the reals, and asked if there exists a space 'large enough' that for every finite colouring there does exist an infinite X with X+X monochromatic. We show that there is indeed such a space. Joint work with Imre Leader.

Thu, 15 Jun 2017
16:00
L6

Non-abelian reciprocity laws and higher Brauer-Manin obstructions

Jon Pridham
(Edinburgh)
Abstract

Kim's iterative non-abelian reciprocity laws carve out a sequence of subsets of the adelic points of a suitable algebraic variety, containing the global points. Like Ellenberg's obstructions to the existence of global points, they are based on nilpotent approximations to the variety. Systematically exploiting this idea gives a sequence starting with the Brauer-Manin obstruction, based on the theory of obstruction towers in algebraic topology. For Shimura varieties, nilpotent approximations are inadequate as the fundamental group is nearly perfect, but relative completions produce an interesting obstruction tower. For modular curves, these maps take values in Galois cohomology of modular forms, and give obstructions to an adelic elliptic curve with global Tate module underlying a global elliptic curve.

Thu, 04 May 2017
11:00
C5

On fields with the absolute Galois group of Q

Jochen Koenigsmann
(Oxford)
Abstract

.. showing that a field K is isomorphic to Q if it has the same absolute Galois group and if it satisfies a very small additional condition (very similar to my talk 2 years ago).

Fri, 22 Sep 2017

11:45 - 13:15
L4

InFoMM CDT Group Meeting

Asbjørn Riseth, Fabian Ying, Caoimhe Rooney, Zachary Wilmott
(Mathematical Institute)
Wed, 10 May 2017

11:30 - 12:30
N3.12

Insertion Algorithms and Littlewood-Richardson Rules

Adam Keilthy
(University of Oxford)
Abstract

The Robin-Schensted-Knuth insertion algorithm provides a bijection between non-negative integer matrices and pairs of semistandard Young tableau. However, by relaxing the conditions on the correspondence, it allows us to define the Poirer-Reutenauer bialgebra, which exactly describes the algebra of symmetric functions viewed as generated by the Schur polynomials. This gives an interesting combinatorial decomposition of symmetric products of Schur polynomials, called a Littlewood Richardson rule, which we will discuss. We will then power through as many generalisations as I have time for: Hecke insertion and stable Grothendieck polynomials, shifted insertion and Schur P-functions, and shifted Hecke insertion and weak shifted stable Grothendieck polynomials

Wed, 03 May 2017

11:30 - 12:30
N3.12

Deficiencies of groups

Giles Gardam
(University of Oxford)
Abstract

Deficiency is a measure of how complicated the presentations of a particular group need to be; it is defined as the maximum of the number of generators minus the number of relators (over all finite presentations of the group). This talk will introduce the basics of deficiency, give a deft example of Swan which illustrates why our understanding of deficiency is deficient, and conclude with some new examples that defy this defeatism: finite $p$-groups can have any deficiency you could (reasonably) wish for.

Tue, 20 Jun 2017

14:00 - 15:00
L5

Numerical Convolution for Tensor Operations

Professor Wolfgang Hackbusch
(Max Planck Institute Leipzig)
Abstract

Starting from an example in quantum chemistry, we explain the techniques of Numerical Tensor Calculus with particular emphasis on the convolution operation. The tensorisation technique also applies to one-dimensional grid functions and allows to perform the convolution with a cost which may be much cheaper than the fast Fourier transform.

Subscribe to