Tue, 02 May 2017
14:00
L3

Nonconvex geometry of low-rank optimizations

Gongguo Tang
(Colorado School of Mines)
Abstract

The past few years have seen a surge of interest in nonconvex reformulations of convex optimizations using nonlinear reparameterizations of the optimization variables. Compared with the convex formulations, the nonconvex ones typically involve many fewer variables, allowing them to scale to scenarios with millions of variables. However, one pays the price of solving nonconvex optimizations to global optimality, which is generally believed to be impossible. In this talk, I will characterize the nonconvex geometries of several low-rank matrix optimizations. In particular, I will argue that under reasonable assumptions, each critical point of the nonconvex problems either corresponds to the global optimum of the original convex optimizations, or is a strict saddle point where the Hessian matrix has a negative eigenvalue. Such a geometric structure ensures that many local search algorithms can converge to the global optimum with random initializations. Our analysis is based on studying how the convex geometries are transformed under nonlinear parameterizations.

Systemic risk, loosely defined, describes the risk that large parts of the financial system will collapse, leading to potentially far-reaching consequences both within and beyond the financial system. Such risks can materialize following shocks to relatively small parts of the financial system and then spread through various contagion channels. Assessing the systemic risk a bank poses to the system has thus become a central part of regulating its capital requirements.

Tue, 16 May 2017
14:15
L4

Cherednik algebras at infinity

Maxim Nazarov
(York University)
Abstract

Heckman introduced N operators on the space of polynomials in N variables, such that these operators form a covariant set relative to permutations of the operators and variables, and such that Jack symmetric polynomials are eigenfunctions of the power sums of these operators. We introduce the analogues of these N operators for Macdonald symmetric polynomials, by using Cherednik operators. The latter operators pairwise commute, and Macdonald polynomials are eigenfunctions of their power sums. We compute the limits of our operators at N → ∞ . These limits yield a Lax operator for Macdonald symmetric functions. This is a joint work with Evgeny Sklyanin.

Fri, 09 Jun 2017

13:00 - 14:00
L6

Structure of martingale transports in finite dimensions

Pietro Siorpaes
((Imperial College)
Abstract


Martingale optimal transport is a variant of the classical optimal transport problem where a martingale constraint is imposed on the coupling. In a recent paper, Beiglböck, Nutz and Touzi show that in dimension one there is no duality gap and that the dual problem admits an optimizer. A key step towards this achievement is the characterization of the polar sets of the family of all martingale couplings. Here we aim to extend this characterization to arbitrary finite dimension through a deeper study of the convex order

 

Fri, 19 May 2017

13:00 - 14:00
L6

Trading ethics for quants

Lyndon Drake
(University of Oxford Faculty of Theology and Religion)
Abstract


I spent a number of years trading government bonds and interest-rate derivatives for Barclays Capital. This included the period of the financial crisis, and I was a colleague of some of the Barclays traders charged with fraud related to LIBOR rate manipulation. I will present a some examples of common trading scenarios, and some of the ethical issues these might raise for quants.
 

Subscribe to