13:00
Generalized gauging in 2+1d lattice models
Abstract
Gauging is a systematic way to construct a model with non-invertible symmetry from a model with ordinary group-like symmetry. In 2+1d dimensions or higher, one can generalize the standard gauging procedure by stacking a symmetry-enriched topological order before gauging the symmetry. This generalized gauging procedure allows us to realize a large class of non-invertible symmetries. In this talk, I will describe the generalized gauging of finite group symmetries in 2+1d lattice models. This talk will be based on my ongoing work with L. Bhardwaj, S.-J. Huang, S. Schäfer-Nameki, and A. Tiwari.
13:00
Celestial Holography and Self-Dual Einstein Gravity
Abstract
Celestial Holography posits the existence of a holographic description of gravitational theories in asymptotically flat space-times. To date, top-down constructions of such dualities involve a combination of twisted holography and twistor theory. The gravitational theory is the closed string B model living in a suitable twistor space, while the dual is a chiral 2d gauge theory living on a stack of D1 branes wrapping a twistor line. I’ll talk about a variant of these models that yields a theory of self-dual Einstein gravity (via the Plebanski equations) in four dimensions. This is based on work in progress with Roland Bittleston, Kevin Costello & Atul Sharma.
14:15
ALC G2-manifolds
Abstract
ALF gravitational instantons, of which the Taub-NUT and Atiyah-Hitchin metrics are prototypes, are the complete non-compact hyperkähler 4-manifolds with cubic volume growth. Examples have been known since the 1970's, but a complete classification was only given around 10 years ago. In this talk, I will present joint work with Haskins and Nordström where we extend some of these results to complete non-compact 7-manifolds with holonomy G2 and an asymptotic geometry, called ALC (asymptotically locally conical), that generalises to higher dimension the asymptotic geometry of ALF spaces.
16:00
Manin's conjecture for Châtelet surfaces
Abstract
We resolve Manin's conjecture for all Châtelet surfaces over Q
(surfaces given by equations of the form x^2 + ay^2 = f(z)) -- in other
words, we establish asymptotics for the number of rational points of
increasing height. The key analytic ingredient is estimating sums of
Fourier coefficients of modular forms along polynomial values.