As he retires from the the Savilian Chair of Geometry, Oxford Mathematician Nigel Hitchin reflects in this interview with Martin Bridson. From early mathematical inspiration at school in Duffield, Derbyshire, Nigel recalls his often unplanned progress via Jesus College, Oxford, Princeton, Cambridge and Warwick, before his final return to Oxford.
InFoMM CDT Group Meeting
Abstract
Niall Bootland (Scalable Two-Phase Flow Solvers)
Sourav Mondal (Electrohydrodynamics in microchannel)
Abstract: Flow of liquid due to an electric potential gradient is possible when the channel walls bear a surface charge and liquid contains free charges (electrolyte). Inclusion of electrokinetic effects in microchannel flows has an added advantage over Poiseuille flow - depending upon the electrolyte concentration, the Debye layer thickness is different, which allows for tuning of flow profiles and the associated mass transport. The developed mathematical model helps in probing the mass transfer effects through a porous walled microchannel induced by electrokinetic forces.
What can fashionable ideas, blind faith, or pure fantasy have to do with the scientific quest to understand the universe? Surely, scientists are immune to trends, dogmatic beliefs, or flights of fancy? In fact, Roger Penrose argues that researchers working at the extreme frontiers of mathematics and physics are just as susceptible to these forces as anyone else.
16:00
The Steinhaus-Weil property: its converses, Solecki amenability and subcontinuity
14:30
Forbidden vector-valued intersection
Abstract
Given vectors $V = (v_i: i \in [n]) \in R^D$, we define the $V$-intersection of $A,B \subset [n]$ to be the vector $\sum_{i \in A \cap B} v_i$. In this talk, I will discuss a new, essentially optimal, supersaturation theorem for $V$-intersections, which can be roughly stated as saying that any large family of sets contains many pairs $(A,B)$ with $V$-intersection $w$, for a wide range of $V$ and $w$. A famous theorem of Frankl and Rödl corresponds to the case $D=1$ and all $v_i=1$ of our theorem. The case $D=2$ and $v_i=(1,i)$ solves a conjecture of Kalai.
Joint work with Peter Keevash.