Tue, 03 May 2016

13:00 - 13:30
C5

√T, or not √T, that is the question

Matthew Saxton
(Mathematical Institute, University of Oxford)
Abstract

We consider the motion of a thin liquid drop on a smooth substrate as the drop evaporates into an inert gas. Many experiments suggest that, at times close to the drop’s extinction, the drop radius scales as the square root of the time remaining until extinction. However, other experiments observe slightly different scaling laws. We use the method of matched asymptotic expansions to investigate whether this different behaviour is systematic or an artefact of experiment.

Tue, 03 May 2016
16:30
L6

Cubic Graphs Embeddable on Surfaces

Michael Mosshammer
(Graz University of Technology)
Abstract

In the theory of random graphs, the behaviour of the typical largest component was studied a lot. The initial results on G(n,m), the random graph on n vertices and m edges, are due to Erdős and Rényi. Recently, similar results for planar graphs were obtained by Kang and Łuczak.


In the first part of the talk, we will extend these results on the size of the largest component further to graphs embeddable on the orientable surface S_g of genus g>0 and see how the asymptotic number and properties of cubic graphs embeddable on S_g are used to obtain those results. Then we will go through the main steps necessary to obtain the asymptotic number of cubic graphs and point out the main differences to the corresponding results for planar graphs. In the end we will give a short outlook to graphs embeddable on surfaces with non-constant genus, especially which results generalise and which problems are still open.

Mon, 16 May 2016
14:15
L4

Quantitative Liouville theorems for equations of the Schouten tensor in conformal geometry.

Luc Nguyen
(Oxford)
Abstract

The classical Yamabe problem asks to find in a given conformal class a metric of constant scalar curvature. In fully nonlinear analogues, the scalar curvature is replaced by certain functions of the eigenvalue of the Schouten curvature tensor. I will report on quantitative Liouville theorems and fine blow-up analysis for these problems. Joint work with Yanyan Li.
 

Wed, 08 Jun 2016

11:30 - 12:30
N3.12

TBA

Alex Betts
(Oxford)
Wed, 11 May 2016

11:00 - 12:30
N3.12

Wild spheres in R3

Simon Bergant
(Oxford)
Abstract

In 1924, James W. Alexander constructed a 2-sphere in R3 that is not ambiently homeomorphic to the standard 2-sphere, which demonstrated the failure of the Schoenflies theorem in higher dimensions. I will describe the construction of the Alexander horned sphere and the Antoine necklace and describe some of their properties.

Wed, 25 May 2016

11:00 - 12:30
N3.12

TBA

Philip Dittman
(Oxford)
Subscribe to