Wed, 01 Jun 2016
15:00
L4

Computing Factor Tables, and Tables of Class Numbers

Roger Heath-Brown
(University of Oxford)
Abstract

Efficient factorization or efficient computation of class 
numbers would both suffice to break RSA.  However the talk lies more in 
computational number theory rather than in cryptography proper. We will 
address two questions: (1) How quickly can one construct a factor table 
for the numbers up to x?, and (2) How quickly can one do the same for the 
class numbers (of imaginary quadratic fields)? Somewhat surprisingly, the 
approach we describe for the second problem is motivated by the classical 
Hardy-Littlewood method.

Tue, 08 Mar 2016

12:00 - 13:15
L4

Boundary Conditions, Mirror Symmetry and Symplectic Duality

Dr Mat Bullimore
(Oxford)
Abstract

 In the last few years, it has become clear that there are striking connections between supersymmetry and geometric representation theory.  In this talk, I will discuss boundary conditions in three dimensional gauge theories with N = 4 supersymmetry.  I will then outline a physical understanding of a remarkable conjecture in representation theory known as `symplectic duality.

Wed, 08 Jun 2016
15:00
L4

Additive Combinatorics, Field Extensions, and Coding Theory.

Gilles Zémor
(University of Bordeaux)
Abstract
Additive combinatorics enable one to characterise subsets S of elements in a group such that S+S has

small cardinality. In particular a theorem of Vosper says that subsets of integers modulo a prime p

with minimal sumsets can only be arithmetic progressions, apart from some degenerate cases. We are

interested in q-analogues of these results, namely characterising subspaces S in some algebras such

that the linear span of its square S^2 has small dimension.

Analogues of Vosper's theorem will imply that such spaces will have bases consisting of elements in

geometric progression.

We derive such analogues in extensions of finite fields, where bounds on codes in the space of

quadratic forms play a crucial role. We also obtain that under appropriately formulated conditions,

linear codes with small squares for the component-wise product can only be generalized Reed-Solomon

codes.



Based on joint works with Christine Bachoc and Oriol Serra, and with Diego Mirandola.
Fri, 26 Feb 2016

13:00 - 14:00
L3

Tunneling in Theories with Many Fields

Sonia Paban
(University of Texas at Austin)
Abstract

The possibility of a landscape of metastable vacua raises the question of what fraction of vacua are truly long lived. Naively any would-be vacuum state has many nearby decay paths, and all possible decays must be suppressed. An interesting model of this phenomena consists of N scalars with a random potential of fourth order. We show that the scaling of the typical minimal bounce action with N is readily understood. We discuss the extension to more realistic landscape models as well as the effects of gravity. 

Mon, 15 Feb 2016

14:00 - 15:00
L5

TBA

Dr. Garth Wells
(Schlumberger)
Thu, 19 May 2016

14:00 - 15:00
L5

Computing defective eigenpairs in parameter-dependent eigenproblems

Dr. Melina Freitag
(University of Bath)
Abstract

The requirement to compute Jordan blocks for multiple eigenvalues arises in a number of physical problems, for example panel flutter problems in aerodynamical stability, the stability of electrical power systems, and in quantum mechanics. We introduce a general method for computing a 2-dimensional Jordan block in a parameter-dependent matrix eigenvalue problem based on the so called Implicit Determinant Method. This is joint work with Alastair Spence (Bath).

Thu, 05 May 2016

14:00 - 15:00
L5

How to effectively compute the spectrum of the Laplacian with mixed Dirichlet and Neumann data

Professor Nilima Nigam
(Simon Fraser University)
Abstract
Eigenfunctions of the Laplace operator with mixed Dirichet-Neumann boundary conditions may possess singularities, especially if the Dirichlet-Neumann junction occurs at angles $\geq \frac{\pi}{2}$. This suggests the use of boundary integral strategies to solve such eigenproblems. As with boundary value problems, integral-equation methods allow for a reduction of dimension, and the resolution of singular behaviour which may otherwise present challenges to volumetric methods.
 
In this talk, we present a  novel integral-equation algorithm for mixed Dirichlet-Neumann eigenproblems. This is based on joint work with Oscar Bruno and Eldar Akhmetgaliyev (Caltech).
 
For domains with smooth boundary, the singular behaviour of the eigenfunctions at  Dirichlet-Neumann junctions is incorporated as part of the discretization strategy for the integral operator.  The discretization we use is based on the high-order Fourier Continuation method (FC). 
 
 For non-smooth (Lipschitz) domains an alternative high-order discretization is presented which achieves high-order accuracy on the basis of graded meshes.
 
 In either case (smooth or Lipschitz boundary), eigenvalues are evaluated by examining the minimal singular values of a suitable discrete system. A naive implementation will not succeed even in simple situations. We implement a strategy inspired by one suggested by Trefethen and Betcke, who developed a modified method of particular solutions.
 
The method is conceptually simple, and allows for highly accurate and efficient computation of eigenvalues and eigenfunctions, even in challenging geometries. 
Thu, 28 Apr 2016

14:00 - 15:00
L5

Fast simplicial finite elements via Bernstein polynomials

Professor Rob Kirby
(Baylor University)
Abstract

For many years, sum-factored algorithms for finite elements in rectangular reference geometry have combined low complexity with the mathematical power of high-order approximation.  However, such algorithms rely heavily on the tensor product structure inherent in the geometry and basis functions, and similar algorithms for simplicial geometry have proven elusive.

Bernstein polynomials are totally nonnegative, rotationally symmetric, and geometrically decomposed bases with many other remarkable properties that lead to optimal-complexity algorithms for element wise finite element computations.  The also form natural building blocks for the finite element exterior calculus bases for the de Rham complex so that H(div) and H(curl) bases have efficient representations as well.  We will also their relevance for explicit discontinuous Galerkin methods, where the element mass matrix requires special attention.

Subscribe to