Tue, 26 Jan 2016

12:00 - 13:15
L4

Elliptic polylogarithms and string amplitudes

Dr Erik Panzer
(Oxford)
Abstract
Recent results showed that the low energy expansion of closed superstring amplitudes can be expressed in terms of

single-valued multiple elliptic polylogarithms. I will explain how these functions may be defined as iterated integrals on the torus and

sketch how they arise from Feynman integrals.
Wed, 20 Jan 2016

11:00 - 12:30
S2.37

Bieberbach's Theorems

Robert Kropholler
(Oxford)
Abstract
I will go through a proof of Bieberbach's theorems proving that a group acting cocompactly on Euclidean n-space has a subgroup consisting of n independent translations. Time permitting I will also prove that there is a bound on the number of such groups for each dimension n. I will assume very little requiring only a small amount of group theory and linear algebra for the proofs. 
Tue, 01 Mar 2016
14:30
L6

Ramsey Classes and Beyond

Jaroslav Nešetřil
(Charles University, Prague)
Abstract

Ramsey classes may be viewed as the top of the line of Ramsey properties. Classical and not so classical examples of Ramsey classes of finite structures were recently extended by many new examples which make the characterisation of Ramsey classes  realistic (and in many cases known). Particularly I will cover recent  joint work with J. Hubicka.
 

Tue, 23 Feb 2016
14:30
L6

Size Ramsey Numbers of Bounded-Degree Triangle-Free Graphs

Rajko Nenadov
(ETH Zurich)
Abstract

The size Ramsey number r'(H) of a graph H is the smallest number of edges in a graph G which is Ramsey with respect to H, that is, such that any 2-colouring of the edges of G contains a monochromatic copy of H. A famous result of Beck states that the size Ramsey number of the path with n vertices is at most bn for some fixed constant b > 0. An extension of this result to graphs of maximum degree ∆ was recently given by Kohayakawa, Rödl, Schacht and Szemerédi, who showed that there is a constant b > 0 depending only on ∆ such that if H is a graph with n vertices and maximum degree ∆ then r'(H) < bn^{2 - 1/∆} (log n)^{1/∆}. On the other hand, the only known lower-bound on the size Ramsey numbers of bounded-degree graphs is of order n (log n)^c for some constant c > 0, due to Rödl and Szemerédi.

Together with David Conlon, we make a small step towards improving the upper bound. In particular, we show that if H is a ∆-bounded-degree triangle-free graph then r'(H) < s(∆) n^{2 - 1/(∆ - 1/2)} polylog n. In this talk we discuss why 1/∆ is the natural "barrier" in the exponent and how we go around it, why we need the triangle-free condition and what are the limits of our approach.

Tue, 09 Feb 2016
14:30
L6

The Chromatic Number of Dense Random Graphs

Annika Heckel
(Oxford University)
Abstract

The chromatic number of the Erdős–Rényi random graph G(n,p) has been an intensely studied subject since at least the 1970s. A celebrated breakthrough by Bollobás in 1987 first established the asymptotic value of the chromatic number of G(n,1/2), and a considerable amount of effort has since been spent on refining Bollobás' approach, resulting in increasingly accurate bounds. Despite this, up until now there has been a gap of size O(1) in the denominator between the best known upper and lower bounds for the chromatic number of dense random graphs G(n,p) where p is constant. In contrast, much more is known in the sparse case.

In this talk, new upper and lower bounds for the chromatic number of G(n,p) where p is constant will be presented which match each other up to a term of size o(1) in the denominator. In particular, they narrow down the optimal colouring rate, defined as the average colour class size in a colouring with the minimum number of colours, to an interval of length o(1). These bounds were obtained through a careful application of the second moment method rather than a variant of Bollobás' method. Somewhat surprisingly, the behaviour of the chromatic number changes around p=1-1/e^2, with a different limiting effect being dominant below and above this value.

Tue, 16 Feb 2016
14:30
L6

Product-Free Subsets of the Alternating Group

Sean Eberhard
(Oxford University)
Abstract

There is an obvious product-free subset of the symmetric group of density 1/2, but what about the alternating group? An argument of Gowers shows that a product-free subset of the alternating group can have density at most n^(-1/3), but we only know examples of density n^(-1/2 + o(1)). We'll talk about why in fact n^(-1/2 + o(1)) is the right answer, why
Gowers's argument can't prove that, and how this all fits in with a more general 'product mixing' phenomenon. Our tools include some nonabelian Fourier analysis, a version of entropy subadditivity adapted to the symmetric group, and a concentration-of-measure result for rearrangements of inner products.

Tue, 02 Feb 2016
14:30
L6

Monochromatic Sums and Products

Ben Green
(Oxford University)
Abstract

Fix some positive integer r. A famous theorem of Schur states that if you partition Z/pZ into r colour classes then, provided p > p_0(r) is sufficiently large, there is a monochromatic triple {x, y, x + y}. By essentially the same argument there is also a monochromatic triple {x', y', x'y'}. Recently, Tom Sanders and I showed that in fact there is a
monochromatic quadruple {x, y, x+y, xy}. I will discuss some aspects of the proof.

Mon, 07 Mar 2016
15:45
L6

Anosov representations and proper actions

Fanny Kassel
(University of Lille 1)
Abstract
 
Anosov representations of word hyperbolic groups into semisimple Lie groups provide a generalization of convex cocompact representations to higher real rank. I will explain how these representations can be used to construct properly discontinuous actions on homogeneous spaces. In certain cases, all properly discontinuous actions of quasi-isometrically embedded groups come from this construction. This is joint work with F. Guéritaud, O. Guichard, and A. Wienhard. 
Mon, 29 Feb 2016
15:45
L6

Bordered Floer homology via immersed curves

Liam Watson
(Glasgow)
Abstract

Bordered Floer homology is a variant of Heegaard Floer homology adapted to manifolds with boundary. I will describe a class of three-manifolds with torus boundary for which these invariants may be recast in terms of immersed curves in a punctured torus. This makes it possible to recast the paring theorem in bordered Floer homology in terms of intersection between curves leading, in turn, to some new observations about Heegaard Floer homology. This is joint work with Jonathan Hanselman and Jake Rasmussen. 

Subscribe to