Mon, 16 Feb 2015

17:00 - 18:00
L5

The random paraxial wave equation and application to correlation-based imaging

Josselin Garnier
(Université Paris Diderot)
Abstract

We analyze wave propagation in random media in the so-called paraxial regime, which is a special high-frequency regime in which the wave propagates along a privileged axis. We show by multiscale analysis how to reduce the problem to the Ito-Schrodinger stochastic partial differential equation. We also show how to close and solve the moment equations for the random wave field. Based on these results we propose to use correlation-based methods for imaging in complex media and consider two examples: virtual source imaging in seismology and ghost imaging in optics.

Mon, 02 Feb 2015

17:00 - 18:00
L4

Unique Continuation, Carleman Estimates, and Blow-up for Nonlinear Wave Equations

Arick Shao
(Imperial College London)
Abstract

In this talk, we consider two disparate questions involving wave equations: (1) how singularities of solutions of subconformal focusing nonlinear wave equations form, and (2) when solutions of (linear and nonlinear) wave equations are determined by their data at infinity. In particular, we will show how tools from solving the second problem - a new family of global nonlinear Carleman estimates - can be used to establish some new results regarding the first question. Previous theorems by Merle and Zaag have established both upper and lower bounds on the local H¹-norm near noncharacteristic blow-up points for subconformal focusing NLW. In our main result, we show that this H¹-norm cannot concentrate along past timelike cones emanating from the blow-up point, i.e., that a significant amount of the action must occur near the corresponding past null cones.

These are joint works with Spyros Alexakis.

Big-bang nucleosynthesis
Fields, B Molaro, P Sarkar, S Chinese Physics C volume 38 issue 9 (08 Jan 2014)
Mon, 26 Jan 2015

17:00 - 18:00
L4

Stability and minimality for a nonlocal variational problem

Nicola Fusco
(Università di Napoli Frederico II)
Abstract

We discuss the local minimality of certain configurations for a nonlocal isoperimetric problem used to model microphase separation in diblock copolymer melts. We show that critical configurations  with positive second variation are local minimizers of the nonlocal area functional and, in fact, satisfy a quantitative isoperimetric inequality with respect to sets  that are  $L^1$-close.  As an application, we address the global and local minimality of certain lamellar configurations.

Mathematicians, art students and the general public collaborate and create.

What do you want on the front of your Christmas cards? It might seem an idle question, but many companies (and even people) give it serious thought. But surely not mathematicians?  

Fri, 12 Dec 2014

14:15 - 15:15
C2

On the Ramdas layer

Vasudeva Murthy
(Tata Institute of Fundamental Research (TIFR) Bangalore)
Abstract

On calm clear nights a minimum in air temperature can occur just above the ground at heights of order 0.5m or less. This is contrary to the conventional belief that ground is the point of minimum. This feature is paradoxical as an apparent unstable layer (the height below the point of minimum) sustains itself for several hours. This was first reported from India by Ramdas and his coworkers in 1932 and was disbelieved initially and attributed to flawed thermometers. We trace its history, acceptance and present a mathematical model in the form of a PDE that simulates this phenomenon.

Subscribe to