Preface
Málek, J Suli, E Birkhauser Nečas Center Series v-vii (21 Jan 2022)
Tue, 30 Jan 2024

14:00 - 15:00
L4

Kneser graphs are Hamiltonian

Torsten Mütze
(University of Warwick)
Abstract

For integers $k \ge 1$ and $n \ge 2k+1$, the Kneser graph $K(n,k)$ has as vertices all $k$-element subsets of an $n$-element ground set, and an edge between any two disjoint sets. It has been conjectured since the 1970s that all Kneser graphs admit a Hamilton cycle, with one notable exception, namely the Petersen graph $K(5,2)$. This problem received considerable attention in the literature, including a recent solution for the sparsest case $n=2k+1$. The main contribution of our work is to prove the conjecture in full generality. We also extend this Hamiltonicity result to all connected generalized Johnson graphs (except the Petersen graph). The generalized Johnson graph $J(n,k,s)$ has as vertices all $k$-element subsets of an $n$-element ground set, and an edge between any two sets whose intersection has size exactly $s$. Clearly, we have $K(n,k)=J(n,k,0)$, i.e., generalized Johnson graphs include Kneser graphs as a special case. Our results imply that all known families of vertex-transitive graphs defined by intersecting set systems have a Hamilton cycle, which settles an interesting special case of Lovász' conjecture on Hamilton cycles in vertex-transitive graphs from 1970. Our main technical innovation is to study cycles in Kneser graphs by a kinetic system of multiple gliders that move at different speeds and that interact over time, reminiscent of the gliders in Conway’s Game of Life, and to analyze this system combinatorially and via linear algebra.

This is joint work with my students Arturo Merino (TU Berlin) and Namrata (Warwick).

Tue, 23 Jan 2024

15:30 - 16:30
Online

Paths in random temporal graphs

Nina Kamčev
(University of Zagreb)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Random temporal graphs are a version of the classical Erdős-Rényi random graph $G(n,p)$ where additionally, each edge has a distinct random time stamp, and connectivity is constrained to sequences of edges with increasing time stamps. We are interested in the asymptotics for the distances in such graphs, mostly in the regime of interest where the average degree $np$ is of order $\log n$ ('near' the phase transition).

More specifically, we will discuss the asymptotic lengths of increasing paths: the lengths of the shortest and longest paths between typical vertices, as well as the maxima between any two vertices; this also covers the (temporal) diameter. In the regime $np \gg \log n$, longest increasing paths were studied by Angel, Ferber, Sudakov and Tassion.

The talk contains joint work with Nicolas Broutin and Gábor Lugosi.

Tue, 23 Jan 2024

14:00 - 15:00
Online

Sharpness of the phase transition for interlacements percolation

Augusto Teixeira
(Instituto Nacional de Matemática Pura e Aplicada (IMPA))
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In this talk we will review the problem of sharpness in percolation, tracing its origins back to the seminal works of Menshikov, Grimmett-Marstrand and Aizenman-Barsky, which successfully settled the question in the context of Bernoulli independent percolation. Then we will present some recent advancements on the field, which have opened up the possibility of investigating dependent percolation models. Special emphasis will be given to the Interpolation technique, which has proved itself very effective. In particular, it has been used to establish the sharpness for Interlacements Percolation, a model introduced by Sznitman with notoriously intricate dependencies.

This talk is based on a joint work with Duminil-Copin, Goswami, Rodriguez and Severo

Rough volatility: fact or artefact?
Cont, R Das, P Sankhya B volume 86 issue 1 191-223 (21 Feb 2024)
Fri, 26 Jan 2024

12:00 - 13:00
Quillen Room

Coadmissible modules over Fréchet-Stein algebras

Finn Wiersig
(University of Oxford)
Abstract

Let K be a non-archimedean field of mixed characteristic (0,p), and let L be a finite extension of
the p-adic numbers contained in K. The speaker is interested in the continuous representations of a
given L-analytic group G in locally convex (usually infinite dimensional) topological vector spaces over K.
This is, up to technicalities, equivalent to studying certain topological modules over the locally
analytic distribution algebra D(G,K) of G. But doing algebra with topological objects is hard!
In this talk, we present an excellent remedy, found by Schneider and Teitelbaum in the early 2000s.

The triangulation complexity of elliptic and sol 3-manifolds
Lackenby, M Purcell, J Mathematische Annalen volume 390 issue 2 1623-1667 (12 Jan 2024)
Fri, 19 Jan 2024

12:00 - 13:00
Common Room

Junior Algebra Social

Abstract

The Junior Algebra and Representation Theory Seminar will kick-off the start of Hilary term with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.

Image of mathematical instruments

We all know that mathematical activity goes on nowadays in a great variety of settings – not just in academia, but across the whole range of industry, education, and beyond.  This diversity in mathematics is by no means new, and yet the study of the history of mathematics has often failed to capture it.  

Subscribe to