The triangulation complexity of elliptic and sol 3-manifolds
Lackenby, M Purcell, J Mathematische Annalen volume 390 issue 2 1623-1667 (12 Jan 2024)
Fri, 19 Jan 2024

12:00 - 13:00
Common Room

Junior Algebra Social

Abstract

The Junior Algebra and Representation Theory Seminar will kick-off the start of Hilary term with a social event in the common room. Come to catch up with your fellow students and maybe play a board game or two. Afterwards we'll have lunch together.

Image of mathematical instruments

We all know that mathematical activity goes on nowadays in a great variety of settings – not just in academia, but across the whole range of industry, education, and beyond.  This diversity in mathematics is by no means new, and yet the study of the history of mathematics has often failed to capture it.  

Tue, 16 Jan 2024

14:00 - 15:00
L4

Heights of random trees

Louigi Addario-Berry
(McGill University)
Abstract

A rooted tree $T$ has degree sequence $(d_1,\ldots,d_n)$ if $T$ has vertex set $[n]$ and vertex $i$ has $d_i$ children for each $i$ in $[n]$. 

I will describe a line-breaking construction of random rooted trees with given degree sequences, as well as a way of coupling random trees with different degree sequences that also couples their heights to one another. 

The construction and the coupling have several consequences, and I'll try to explain some of these in the talk.

First, let $T$ be a branching process tree with criticalmean oneoffspring distribution, and let $T_n$ have the law of $T$ conditioned to have size $n$. Then the following both hold.
1) $\operatorname{height}(T_n)/\log(n)$ tends to infinity in probability. 
2) If the offspring distribution has infinite variance then $\operatorname{height}(T_n)/n^{1/2}$ tends to $0$ in probability. This result settles a conjecture of Svante Janson.

The next two statements relate to random rooted trees with given degree sequences. 
1) For any $\varepsilon > 0$ there is $C > 0$ such that the following holds. If $T$ is a random tree with degree sequence $(d_1,\ldots,d_n)$ and at least $\varepsilon n$ leaves, then $\mathbb{E}(\operatorname{height}(T)) < C \sqrt{n}$. 
2) Consider any random tree $T$ with a fixed degree sequence such that $T$ has no vertices with exactly one child. Then $\operatorname{height}(T)$ is stochastically less than $\operatorname{height}(B)$, where $B$ is a random binary tree of the same size as $T$ (or size one greater, if $T$ has even size). 

This is based on joint work with Serte Donderwinkel and Igor Kortchemski.

Extensional flow of a compressible viscous fluid
McPhail, M Oliver, J Parker, R Griffiths, I Journal of Fluid Mechanics volume 977 (22 Dec 2023)
Looking forwards and backwards: dynamics and genealogies of locally regulated populations
Etheridge, A Kurtz, T Letter, I Ralph, P Tsui, T Electronic Journal of Probability volume 29 1-85 (13 Feb 2024)
Subtle variation in sepsis-III definitions markedly influences predictive performance within and across methods
Cohen, S Foster, J Foster, P Lou, H Lyons, T Morley, S Morrill, J Ni, H Palmer, E Wang, B Wu, Y Yang, L Yang, W Scientific Reports volume 14 (22 Jan 2024)
Fri, 10 May 2024
16:00
L1

Talks on Talks

Abstract

What makes a good talk? This year, graduate students and postdocs will give a series talks on how to give talks! There may even be a small prize for the audience’s favourite.

If you’d like to have a go at informing, entertaining, or just have an axe to grind about a particularly bad talk you had to sit through, we’d love to hear from you (you can email Ric Wade or ask any of the organizers).
 

Subscribe to