Tue, 24 Oct 2023

14:30 - 15:00
VC

Redefining the finite element

India Marsden
(Oxford)
Abstract

The Ciarlet definition of a finite element has been used for many years to describe the requisite parts of a finite element. In that time, finite element theory and implementation have both developed and improved, which has left scope for a redefinition of the concept of a finite element. In this redefinition, we look to encapsulate some of the assumptions that have historically been required to complete Ciarlet’s definition, as well as incorporate more information, in particular relating to the symmetries of finite elements, using concepts from Group Theory. This talk will present the machinery of the proposed new definition, discuss its features and provide some examples of commonly used elements.

Tue, 23 Jan 2024

14:30 - 15:00
L6

Manifold-Free Riemannian Optimization

Boris Shustin
(Mathematical Institute (University of Oxford))
Abstract

Optimization problems constrained to a smooth manifold can be solved via the framework of Riemannian optimization. To that end, a geometrical description of the constraining manifold, e.g., tangent spaces, retractions, and cost function gradients, is required. In this talk, we present a novel approach that allows performing approximate Riemannian optimization based on a manifold learning technique, in cases where only a noiseless sample set of the cost function and the manifold’s intrinsic dimension are available.

Tue, 24 Oct 2023

14:00 - 14:30
VC

Analysis and Numerical Approximation of Mean Field Game Partial Differential Inclusions

Yohance Osborne
(UCL)
Abstract

The PDE formulation of Mean Field Games (MFG) is described by nonlinear systems in which a Hamilton—Jacobi—Bellman (HJB) equation and a Kolmogorov—Fokker—Planck (KFP) equation are coupled. The advective term of the KFP equation involves a partial derivative of the Hamiltonian that is often assumed to be continuous. However, in many cases of practical interest, the underlying optimal control problem of the MFG may give rise to bang-bang controls, which typically lead to nondifferentiable Hamiltonians. In this talk we present results on the analysis and numerical approximation of second-order MFG systems for the general case of convex, Lipschitz, but possibly nondifferentiable Hamiltonians.
In particular, we propose a generalization of the MFG system as a Partial Differential Inclusion (PDI) based on interpreting the partial derivative of the Hamiltonian in terms of subdifferentials of convex functions.

We present theorems that guarantee the existence of unique weak solutions to MFG PDIs under a monotonicity condition similar to one that has been considered previously by Lasry & Lions. Moreover, we introduce a monotone finite element discretization of the weak formulation of MFG PDIs and prove the strong convergence of the approximations to the value function in the H1-norm and the strong convergence of the approximations to the density function in Lq-norms. We conclude the talk with some numerical experiments involving non-smooth solutions. 

This is joint work with my supervisor Iain Smears. 

Mon, 09 Oct 2023
14:15
L4

How homotopy theory helps to classify algebraic vector bundles

Mura Yakerson
(Oxford)
Abstract

Classically, topological vector bundles are classified by homotopy classes of maps into infinite Grassmannians. This allows us to study topological vector bundles using obstruction theory: we can detect whether a vector bundle has a trivial subbundle by means of cohomological invariants. In the context of algebraic geometry, one can ask whether algebraic vector bundles over smooth affine varieties can be classified in a similar way. Recent advances in motivic homotopy theory give a positive answer, at least over an algebraically closed base field. Moreover, the behaviour of vector bundles over general base fields has surprising connections with the theory of quadratic forms.

Tue, 21 Nov 2023

14:00 - 15:00
L5

Proximal Galekin: A Structure-Preserving Finite Element Method For Pointwise Bound Constraints

Brendan Keith
(Brown University)
Abstract

The proximal Galerkin finite element method is a high-order, nonlinear numerical method that preserves the geometric and algebraic structure of bound constraints in infinitedimensional function spaces. In this talk, we will introduce the proximal Galerkin method and apply it to solve free-boundary problems, enforce discrete maximum principles, and develop scalable, mesh-independent algorithms for optimal design. The proximal Galerkin framework is a natural consequence of the latent variable proximal point (LVPP) method, which is an stable and robust alternative to the interior point method that will also be introduced in this talk.

In particular, LVPP is a low-iteration complexity, infinite-dimensional optimization algorithm that may be viewed as having an adaptive barrier function that is updated with a new informative prior at each (outer loop) optimization iteration. One of the main benefits of this algorithm is witnessed when analyzing the classical obstacle problem. Therein, we find that the original variational inequality can be replaced by a sequence of semilinear partial differential equations (PDEs) that are readily discretized and solved with, e.g., high-order finite elements. Throughout the talk, we will arrive at several unexpected contributions that may be of independent interest. These include (1) a semilinear PDE we refer to as the entropic Poisson equation; (2) an algebraic/geometric connection between high-order positivity-preserving discretizations and an infinite-dimensional Lie group; and (3) a gradient-based, bound-preserving algorithm for two-field density-based topology optimization.

The complete latent variable proximal Galerkin methodology combines ideas from nonlinear programming, functional analysis, tropical algebra, and differential geometry and can potentially lead to new synergies among these areas as well as within variational and numerical analysis. This talk is based on [1].

 

Keywords: pointwise bound constraints, bound-preserving discretization, entropy regularization, proximal point

 

Mathematics Subject Classifications (2010): 49M37, 65K15, 65N30

 

References  [1] B. Keith, T.M. Surowiec. Proximal Galerkin: A structure-preserving finite element method for pointwise bound constraints arXiv preprint arXiv:2307.12444 2023.

Brown University Email address: @email

Simula Research Laboratory Email address: @email

Tue, 10 Oct 2023

14:00 - 14:30
L4

A sparse hp-finite element method for the Helmholtz equation posed on disks, annuli and cylinders

Ioannis Papadopoulos
(Imperial)
Abstract

We introduce a sparse and very high order hp-finite element method for the weak form of the Helmholtz equation.  The domain may be a disk, an annulus, or a cylinder. The cells of the mesh are an innermost disk (omitted if the domain is an annulus) and concentric annuli.

We demonstrate the effectiveness of this method on PDEs with radial direction discontinuities in the coefficients and data. The discretization matrix is always symmetric and positive-definite in the positive-definite Helmholtz regime. Moreover, the Fourier modes decouple, reducing a two-dimensional PDE solve to a series of one-dimensional solves that may be computed in parallel, scaling with linear complexity. In the positive-definite case, we utilize the ADI method of Fortunato and Townsend to apply the method to a 3D cylinder with a quasi-optimal complexity solve.

Tue, 03 Oct 2023
17:00
Lecture Theatre 1

Around the World in 80 Games - Marcus du Sautoy

Marcus du Sautoy
(University of Oxford)
Further Information

Oxford Mathematics Public Lecture: Around the World in 80 Games - Marcus du Sautoy

Join Marcus as he takes us on a mathematical journey across the centuries and through countries, continents and cultures in search of the games we love to play.  Based on his new book, he looks at the way mathematics has always been deeply intertwined with games and investigates how games themselves can provide us with opportunities for mathematical insight into the world.

From backgammon to chess, Catan to Snakes and Ladders, games are not simply an enjoyable diversion. They are rather the height of human ingenuity. Ours is the species that loves playing games: not homo sapiens but homo ludens.  The lecture is suitable for everyone ‘from age 8 to 108.’  Come and join Marcus on his journey Around the World in 80 Games. You simply can’t lose…

Marcus du Sautoy is Charles Simonyi Professor for the Public Understanding of Science in Oxford and Professor of Mathematics.

Please email @email to register.

The lecture will be broadcast on the Oxford Mathematics YouTube Channel on 24th October at 5pm, and can be watched any time after.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Looking for future biological control agents: the comparative function of the deutosternal groove in mesostigmatid mites.
Bowman, C Experimental & applied acarology volume 91 issue 2 139-235 (07 Oct 2023)
Subscribe to