15:30
Loop expansions for lattice gauge theories
Abstract
In this talk, we will present a loop expansion for lattice gauge theories and its application to prove ultraviolet stability in the Abelian Higgs model. We will first describe this loop expansion and how it relates to earlier works of Brydges-Frohlich-Seiler. We will then show how the expansion leads to a quantitative diamagnetic inequality, which in turn implies moment estimates, uniform in the lattice spacing, on the Holder-Besov norm of the gauge field marginal of the Abelian Higgs lattice model. Based on Gauge field marginal of an Abelian Higgs model, which is joint work with Ajay Chandra.
t-structures on the equivariant derived category of the Steinberg scheme.
Abstract
The Steinberg scheme and the equivariant coherent sheaves on it play a very important role in Geometric Representation theory. In this talk we will discuss various t-structures on the equivariant derived category of the Steinberg of importance for Representation theory in positive characteristics. Based on arXiv:2302.05782.
18:00
Frontiers in Quantitative Finance: Tackling Nonlinear Price Impact with Linear Strategies
Abstract
This seminar is part of our Frontiers in Quantitative Finance. Attendance is free of charge but requires prior online registration.
Abstract
Empirical studies consistently find that the price impact of large trades approximately follows a nonlinear power law. Yet, tractable formulas for the portfolios that trade off predictive trading signals, risk, and trading costs in an optimal manner are only available for quadratic costs corresponding to linear price impact. In this paper, we show that the resulting linear strategies allow to achieve virtually optimal performance also for realistic nonlinear price impact, if the “effective” quadratic cost parameter is chosen appropriately. To wit, for a wide range of risk levels, this leads to performance losses below 2% compared to the numerical Viterbi algorithm of Kolm and Ritter (2014) run at very high accuracy. The effective quadratic cost depends on the portfolio risk, but can be computed without any sophisticated numerics by simply maximizing an explicit scalar function.
Read more on this work here.
16:00
A closed form model-free approximation for the Initial Margin of option portfolios
Abstract
Central clearing counterparty houses (CCPs) play a fundamental role in mitigating the counterparty risk for exchange traded options. CCPs cover for possible losses during the liquidation of a defaulting member's portfolio by collecting initial margins from their members. In this article we analyze the current state of the art in the industry for computing initial margins for options, whose core component is generally based on a VaR or Expected Shortfall risk measure. We derive an approximation formula for the VaR at short horizons in a model-free setting. This innovating formula has promising features and behaves in a much more satisfactory way than the classical Filtered Historical Simulation-based VaR in our numerical experiments. In addition, we consider the neural-SDE model for normalized call prices proposed by [Cohen et al., arXiv:2202.07148, 2022] and obtain a quasi-explicit formula for the VaR and a closed formula for the short term VaR in this model, due to its conditional affine structure.
In times of inflation - and there is a lot of it around just now - companies like to avoid price hikes. A favourite tactic is to reduce product size while keeping the price the same. But do you know how the maths works?
James Munro explains the mathematical cunning of shrinkflation, the first in a series of (very) short films about numeracy, a skill we all need to navigate our way around the world, but which we perhaps take for granted.
14:15
Einstein metrics on the Ten-Sphere
Abstract
In this talk we give an introduction to the topic of Einstein metrics on spheres. In particular, we prove the existence of three non-round Einstein metrics with positive scalar curvature on $S^{10}.$ Previously, the only even-dimensional spheres known to admit non-round Einstein metrics were $S^6$ and $S^8.$ This talk is based on joint work with Jan Nienhaus.