14:15
Existence of harmonic maps in higher dimensions
Abstract
Harmonic maps from surfaces to other manifolds is a fundamental object of geometric analysis with many applications, for example to minimal surfaces. In particular, there are many available methods of constructing them such, such as using complex geometry, min-max methods or flow techniques. By contrast, much less is known for harmonic maps from higher dimensional manifolds. In the present talk I will explain the role of dimension in this problem and outline the recent joint work with D. Stern, where we provide a min-max construction for higher-dimensional harmonic maps. If time permits, an application to eigenvalue optimisation problems will be discussed. Based on joint work with D. Stern.
14:15
Stability conditions for line bundles on nodal curves
Abstract
Mathematicians have been interested in the problem of compactifying the Jacobian variety of curves since the mid XIX century. In this talk we will discuss how all 'reasonable' compactified Jacobians of nodal curves can be classified combinatorically. This suffices to obtain a combinatorial classification of all 'reasonable' compactified universal (over the moduli spaces of stable curves) Jacobians. This is a joint work with Orsola Tommasi.
Elliptic curves and modularity
Abstract
The goal of this talk is to give you a glimpse of the Langlands program, a central topic at the intersection of algebraic number theory, algebraic geometry and representation theory. I will focus on a celebrated instance of the Langlands correspondence, namely the modularity of elliptic curves. In the first part of the talk, I will give an explicit example, discuss the different meanings of modularity for rational elliptic curves, and mention applications. In the second part of the talk, I will discuss what is known about the modularity of elliptic curves over more general number fields.