14:00
A tale of 2-groups: Dp(USp(2N)) theories
Note: we would recommend to join the meeting using the Zoom client for best user experience.
It is possible to join online via Zoom.
Abstract
After a brief introduction, I elucidate a technique, dubbed "bootstrap'', which generates an infinite family of D_p(G) theories, where for a given arbitrary group G and a parameter b, each theory in the same family has the same number of mass parameters, same number of marginal deformations, same 1-form symmetry, and same 2-group structure. This technique is utilized to establish the presence or absence of the 2-group symmetries in several classes of D_p(G) theories. I, then, argue that we found the presence of 2-group symmetries in a class of Argyres-Douglas theories, called D_p(USp(2N)), which can be realized by Z_2-twisted compactification of the 6d N=(2,0) of the D-type on a sphere with an irregular twisted puncture and a regular twisted full puncture. I will also discuss the 3d mirror theories of general D_p(USp(2N)) theories that serve as an important tool to study their flavor symmetry and Higgs branch.
14:00
1-form symmetry versus large N QCD
Note: we would recommend to join the meeting using the Zoom client for best user experience.
It is possible to join online via Zoom.
Abstract
It has long been appreciated that in QCD-like theories without fundamental matter, confinement can be given a sharp characterization in terms of symmetry. More recently, such symmetries have been identified as 1-form symmetries, which fit into the broader category of generalized global symmetries. In this talk I will discuss obstructions to the existence of a 1-form symmetry in large N QCD, where confinement is a sharp notion. I give general arguments for this disconnect between 1-form symmetries and confinement, and use 2d scalar QCD on the lattice as an explicit example.
14:00
Gravitational Regge bounds
Note: we would recommend to join the meeting using the Zoom client for best user experience.
It is possible to join online via Zoom.
Abstract
I will review the basic assumptions and spell out the arguments that lead to the bound on the Regge growth of gravitational scattering amplitudes. I will discuss the Regge bounds both at fixed transfer momentum and smeared over it. Our basic conclusion is that gravitational scattering amplitudes admit dispersion relations with two subtractions. For a sub-class of smeared amplitudes, black hole formation reduces the number of subtractions to one. Finally, I will discuss bounds on local growth derived using dispersion relations. This talk is based on https://arxiv.org/abs/2202.08280.
17:00
The million-dollar shuffle: symmetry and complexity - Colva Roney-Dougal
In 1936, Alan Turing proved the startling result that not all mathematical problems can be solved algorithmically. For those which can be, we still do not always know when there's a clever technique which could give us the answer quickly. In particular, the famous "P = NP" question asks whether, for problems where the correct solution has a proof which can easily be checked, in fact there's a quick way to find the answer.
Many difficult problems become easier if they have symmetries: finding the shortest route to deliver many parcels would be easy if all the houses were neatly arranged in a circle. This lecture will explore the interactions between symmetry and complexity.
Colva Roney-Dougal is Professor of Pure Mathematics at the University of St Andrews and Director of the Centre for Interdisciplinary Research in Computational Algebra.
Please email @email to register.
The lecture will be available on our Oxford Mathematics YouTube Channel on 12 October at 5 pm.
The Oxford Mathematics Public Lectures are generously supported by XTX Markets.
14:00
Character sheaves and Khovanov-Rozansky homology
Abstract
Khovanov-Rozansky homology is a link invariant that categorifies the HOMFLY-PT polynomial. I will describe a geometric model for this invariant, living in the monodromic Hecke category. I will also explain how it allows to identify objects representing graded pieces of Khovanov-Rozansky homology, using a remarkable family of character sheaves. Based on joint works with Roman Bezrukavnikov.
Knutson's Conjecture on the Representation Ring
Abstract
Donald Knutson proposed the conjecture, later disproven and refined by Savitskii, that for every irreducible character of a finite group, there existed a virtual character such their tensor product was the regular character. In this talk, we disprove both this conjecture and its refinement. We then introduce the Knutson Index as a measure of the failure of Knutson's Conjecture and discuss its algebraic properties.