Today the UK funding bodies have published the results of the UK’s most recent national research assessment exercise, the Research Excellence Framework (REF) 2021.
Research from the Mathematical Institute and the Department of Statistics in Oxford was submitted together under Unit of Assessment 10. Overall, 78% of our submission was judged to be 4* (the highest score available, given for research quality that is world-leading in terms of originality, significance, and rigour).
Resolution of the Erdős-Sauer problem on regular subgraphs
Abstract
In this talk we discuss solution of the well-known problem of Erdős and Sauer from 1975 which asks for the maximum number of edges an $n$-vertex graph can have without containing a $k$-regular subgraph, for some fixed integer $k\geq 3$. We prove that any $n$-vertex graph with average degree at least $C_k\log\log n$ contains a $k$-regular subgraph. This matches the lower bound of Pyber, Rödl and Szemerédi and substantially
improves an old result of Pyber, who showed that average degree at least $C_k\log n$ is enough.
Our method can also be used to settle asymptotically a problem raised by Erdős and Simonovits in 1970 on almost regular subgraphs of sparse graphs and to make progress on the well-known question of Thomassen from 1983 on finding subgraphs with large girth and large average degree.
Joint work with Oliver Janzer
Thresholds
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Abstract
Thresholds for increasing properties of random structures are a central concern in probabilistic combinatorics and related areas. In 2006, Kahn and Kalai conjectured that for any nontrivial increasing property on a finite set, its threshold is never far from its "expectation-threshold," which is a natural (and often easy to calculate) lower bound on the threshold. In this talk, I will present recent progress on this topic. Based on joint work with Huy Tuan Pham.
One-Day Meeting in Combinatorics
The speakers are Gabor Lugosi (Barcelona), Gal Kronenberg (Oxford), Paul Balister (Oxford), Julia Wolf (Cambridge), and David Wood (Monash). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.
Threshold for Steiner triple systems
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Abstract
We prove that with high probability $\mathbb{G}^{(3)}(n,n^{-1+o(1)})$ contains a spanning Steiner triple system for $n\equiv 1,3\pmod{6}$, establishing the exponent for the threshold probability for existence of a Steiner triple system. We also prove the analogous theorem for Latin squares. Our result follows from a novel bootstrapping scheme that utilizes iterative absorption as well as the connection between thresholds and fractional expectation-thresholds established by Frankston, Kahn, Narayanan, and Park.
This is joint work with Ashwin Sah and Michael Simkin.
Unicellular maps and hyperbolic surfaces in high genus
Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.
Abstract
In the past few years, the study of the geometric properties of random maps has been extended to a new regime, the "high genus regime", where we are interested in maps whose size and genus tend to infinity at the same time, at the same rate.
We consider here a slightly different case, where the genus also tends to infinity, but less rapidly than the size, and we study the law of simple cycles (with a well-chosen rescaling of the graph distance) in unicellular maps (maps with one face), thanks to a powerful bijection of Chapuy, Féray and Fusy.
The interest of this work is that we obtain exactly the same law as Mirzakhani and Petri who counted closed geodesics on a model of random hyperbolic surfaces in large genus (the Weil-Petersson measure). This leads us to conjecture that these two models are somehow "the same" in the limit. This is joint work with Svante Janson.