Finite element methods for the Stokes–Onsager–Stefan–Maxwell equations of multicomponent flow
Abstract
The Onsager framework for linear irreversible thermodynamics provides a thermodynamically consistent model of mass transport in a phase consisting of multiple species, via the Stefan–Maxwell equations, but a complete description of the overall transport problem necessitates also solving the momentum equations for the flow velocity of the medium. We derive a novel nonlinear variational formulation of this coupling, called the (Navier–)Stokes–Onsager–Stefan–Maxwell system, which governs molecular diffusion and convection within a non-ideal, single-phase fluid composed of multiple species, in the regime of low Reynolds number in the steady state. We propose an appropriate Picard linearisation posed in a novel Sobolev space relating to the diffusional driving forces, and prove convergence of a structure-preserving finite element discretisation. The broad applicability of our theory is illustrated with simulations of the centrifugal separation of noble gases and the microfluidic mixing of hydrocarbons.
Burns holography
Abstract
Holography in asymptotically flat spaces is one of the most coveted goals of modern mathematical physics. In this talk, I will motivate a novel holographic description of self-dual SO(8) Yang-Mills + self-dual conformal gravity on a Euclidean signature, asymptotically flat background called Burns space. The holographic dual lives on a stack of D1-branes wrapping a CP^1 cycle in the twistor space of R^4 and is given by a gauged beta-gamma system with SO(8) flavor and a pair of defects at the north and south poles. It provides the first example of a stringy realization of (asymptotically) flat holography and is a Euclidean signature variant of celestial holography. This is based on ongoing work with Kevin Costello and Natalie Paquette.
On-shell Correlators and Color-Kinematics Duality in Curved Spacetimes
It is also possible to join online via Zoom.
Abstract
We define a perturbatively calculable quantity—the on-shell correlator—which furnishes a unified description of particle dynamics in curved spacetime. Specializing to the case of flat and anti-de Sitter space, on-shell correlators coincide precisely with on-shell scattering amplitudes and boundary correlators, respectively. Remarkably, we find that symmetric manifolds admit a generalization of on-shell kinematics in which the corresponding momenta are literally the isometry generators of the spacetime acting on the external kinematic data. These isometric momenta are intrinsically non-commutative but exhibit on-shell conditions that are identical to those of flat space, thus providing a common language for computing and representing on-shell correlators which is agnostic about the underlying geometry.
As applications of these tools, we compute n-point scalar correlators in AdS in terms of isometric momenta. In many cases, the results are direct lifts of flat-space expressions. We provide field-theoretic proofs of color-kinematics duality and BCJ relations in AdS at n-points in biadjoint scalar theory and the nonlinear sigma model. We discuss possible extensions to generic curved spacetimes without symmetry.