Film music, and musicals, can be an acquired taste, especially when the strings get going, and the strings are certainly being pulled in this song by the Sherman Brothers from the 1964 Disney film Mary Poppins.
The Cauchy problem for the ternary interaction of impulsive gravitational waves
A link for this talk will be sent to our mailing list a day or two in advance. If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.
Abstract
In General Relativity, an impulsive gravitational wave is a localized and singular solution of the
Einstein equations modeling the spacetime distortions created by a strongly gravitating source.
I will present a comprehensive theory allowing for ternary interactions of such impulsive gravitational waves in translation-symmetry, offering the first examples of such an interaction.
The proof combines new techniques from harmonic analysis, Lorentzian geometry, and hyperbolic PDEs that are helpful to treat highly anisotropic low-regularity questions beyond the considered problem.
This is joint work with Jonathan Luk.
The strain Hodge Laplacian and DGFEM for the incompatibility operator
Abstract
Motivated by the physical relevance of many Hodge Laplace-type PDEs from the finite element exterior calculus, we analyse the Hodge Laplacian boundary value problem arising from the strain space in the linear elasticity complex, an exact sequence of function spaces naturally arising in several areas of continuum mechanics. We propose a discretisation based on the adaptation of discontinuous Galerkin FEM for the incompatibility operator $\mathrm{inc} := \mathrm{rot}\circ\mathrm{rot}$, using the symmetric-tensor-valued Regge finite element to discretise the strain field; via the 'Regge calculus', this element has already been successfully applied to discretise another metric tensor, namely that arising in general relativity. Of central interest is the characterisation of the associated Sobolev space $H(\mathrm{inc};\mathbb{R}^{d\times d}_{\mathrm{sym}})$. Building on the pioneering work of van Goethem and coauthors, we also discuss promising connections between functional analysis of the $\mathrm{inc}$ operator and Kröner's theory of intrinsic elasticity in the presence of defects.
This is based on ongoing work with Dr Kaibo Hu.
Randomized algorithms for Tikhonov regularization in linear least squares
Abstract
Regularization of linear least squares problems is necessary in a variety of contexts. However, the optimal regularization parameter is usually unknown a priori and is often to be determined in an ad hoc manner, which may involve solving the problem for multiple regularization parameters. In this talk, we will discuss three randomized algorithms, building on the sketch-and-precondition framework in randomized numerical linear algebra (RNLA), to efficiently solve this set of problems. In particular, we consider preconditioners for a set of Tikhonov regularization problems to be solved iteratively. The first algorithm is a Cholesky-based algorithm employing a single sketch for multiple parameters; the second algorithm is SVD-based and improves the computational complexity by requiring a single decomposition of the sketch for multiple parameters. Finally, we introduce an algorithm capable of exploiting low-rank structure (specifically, low statistical dimension), requiring a single sketch and a single decomposition to compute multiple preconditioners with low-rank structure. This algorithm avoids the Gram matrix, resulting in improved stability as compared to related work.
Reinforcement learning for time-optimal vehicle control
Abstract
Time-optimal control can be used to improve driving efficiency for autonomous
vehicles and it enables us explore vehicle and driver behaviour in extreme
situations. Due to the computational cost and limited scope of classical
optimal control methods we have seen new interest in applying reinforcement
learning algorithms to autonomous driving tasks.
In this talk we present methods for translating time-optimal vehicle control
problems into reinforcement learning environments. For this translation we
construct a sequence of environments, starting from the closest representation
of our optimisation problem, and gradually improve the environments reward
signal and feature quality. The trained agents we obtain are able to generalise
across different race tracks and obtain near optimal solutions, which can then
be used to speed up the solution of classical time-optimal control problems.
Optimal control of bifurcation structures
Abstract
Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability, or bring forward a bifurcation to enable rapid switching between states. In this talk, we will describe a numerical technique for controlling the bifurcation diagram of a nonlinear partial differential equation by varying the shape of the domain or a parameter in the equation. Our aim is to delay or advance a given branch point to a target parameter value. The algorithm consists of solving an optimization problem constrained by an augmented system of equations that characterize the location of the branch points. The flexibility and robustness of the method also allow us to advance or delay a Hopf bifurcation to a target value of the bifurcation parameter, as well as controlling the oscillation frequency. We will apply this technique on systems arising from biology, fluid dynamics, and engineering, such as the FitzHugh-Nagumo model, Navier-Stokes, and hyperelasticity equations.