Thu, 27 Jan 2022

12:00 - 13:00
L6

Regularity results for Legendre-Hadamard elliptic systems

Christopher Irving
(Oxford University)
Abstract

I will discuss the regularity of solutions to quasilinear systems satisfying a Legendre-Hadamard ellipticity condition. For such systems it is known that weak solutions may which fail to be C^1 in any neighbourhood, so we cannot expect a general regularity theory. However if we assume an a-priori regularity condition of the solutions we can rule out such counterexamples. Focusing on solutions to Euler-Lagrange systems, I will present an improved regularity results for solutions whose gradient satisfies a suitable BMO / VMO condition. Ideas behind the proof will be presented in the interior case, and global consequences will also be discussed.

Mon, 07 Mar 2022

16:30 - 17:30
Virtual

Nonlinear wave equations, the weak null condition, and radiation fields

Joseph Keir
(Oxford University)
Abstract

Nonlinear wave equations are ubiquitous in physics, and in three spatial dimensions they can exhibit a wide range of interesting behaviour even in the small data regime, ranging from dispersion and scattering on the one hand, through to finite-time blowup on the other. The type of behaviour exhibited depends on the kinds of nonlinearities present in the equations. In this talk I will explore the boundary between "good" nonlinearities (leading to dispersion similar to the linear waves) and "bad" nonlinearities (leading to finite-time blowup). In particular, I will give an overview of a proof of global existence (for small initial data) for a wide class of nonlinear wave equations, including some which almost fail to exist globally, but in which the singularity in some sense takes an infinite time to form. I will also show how to construct other examples of nonlinear wave equations whose solutions exhibit very unusual asymptotic behaviour, while still admitting global small data solutions.

Mon, 31 Jan 2022

16:30 - 17:30
Virtual

Geometric measure theory on singular spaces with lower Ricci bounds and the isoperimetric problem

Daniele Semola
(University of Oxford)
Abstract

The aim of this talk is to present some recent developments of Geometric Measure Theory on non smooth spaces with lower Ricci Curvature bounds, mainly related to the first and second variation formula for the area, and their applications to the isoperimetric problem on non compact manifolds. The reinterpretation of some classical results in Geometric Analysis in a low regularity setting, combined with the compactness and stability theory for spaces with lower curvature bounds, leads to a series of new geometric inequalities for smooth, non compact Riemannian manifolds. The talk is based on joint works with Andrea Mondino, Gioacchino Antonelli, Enrico Pasqualetto and Marco Pozzetta.

Last week saw the beginning of the new term (or Hilary as it is called in Oxford). And with it, came the return to normality, or at least the return to full in-person lectures for students, especially first and second years whose lectures were nearly all online last term. Masks had still to be worn but we were back to the model of a fixed-time, a lecturer, a whiteboard and lots of pens (marker and biro).

Wed, 23 Feb 2022
12:00
L6

Almost Robinson geometry

Arman Taghavi Chabert
(Warsaw)
Abstract

Non-shearing congruences of null geodesics on four-dimensional Lorentzian manifolds are fundamental objects of mathematical relativity. Their prominence in exact solutions to the Einstein field equations is supported by major results such as the Robinson, Goldberg-Sachs and Kerr theorems. Conceptually, they lie at the crossroad between Lorentzian conformal geometry and Cauchy-Riemann geometry, and are one of the original ingredients of twistor theory.
 
Identified as involutive totally null complex distributions of maximal rank, such congruences generalise to any even dimensions, under the name of Robinson structures. Nurowski and Trautman aptly described them as Lorentzian analogues of Hermitian structures. In this talk, I will give a survey of old and new results in the field.

Wed, 26 Jan 2022

15:00 - 16:00
Virtual

Introduction to Social Choice Theory

Arturo Rodriguez Fanlo
(Logic Group)
Abstract

This talk aims to be a rigorous introduction to Social Choice Theory, a sub-branch of Game Theory with natural applications to economics, sociology and politics that tries to understand how to determine, based on the personal opinions of all individuals, the collective opinion of society. The goal is to prove the three famous and pessimistic impossibility theorems: Arrow's theorem, Gibbard's theorem and Balinski-Young's theorem. Our blunt conclusion will be that, unfortunately, there are no ideally fair social choice systems. Is there any hope yet?

Fri, 04 Mar 2022

14:00 - 15:00
L6

Koszul Monoids in Quasi-abelian Categories

Rhiannon Savage
(University of Oxford)
Abstract

In this talk I will discuss my extension of the Koszul duality theory of Beilinson, Ginzburg, and Soergel to the more general setting of quasi-abelian categories. In particular, I will define the notions of Koszul monoids, and quadratic monoids and their duals. Schneiders' embedding of a quasi-abelian category into an abelian category, its left heart, allows us to prove an equivalence of derived categories for certain categories of modules over Koszul monoids and their duals. The key examples of categories for which this theory works are the categories of complete bornological spaces and the categories of inductive limits of Banach spaces. These categories frequently appear in derived analytic geometry.

Thu, 24 Feb 2022
14:00
Virtual

Paving a Path for Polynomial Preconditioning in Parallel Computing

Jennifer Loe
(Sandia National Laboratories)
Abstract

Polynomial preconditioning for linear solvers is well-known but not frequently used in current scientific applications.  Furthermore, polynomial preconditioning has long been touted as well-suited for parallel computing; does this claim still hold in our new world of GPU-dominated machines?  We give details of the GMRES polynomial preconditioner and discuss its simple implementation, its properties such as eigenvalue remapping, and choices such as the starting vector and added roots.  We compare polynomial preconditioned GMRES to related methods such as FGMRES and full GMRES without restarting. We conclude with initial evaluations of the polynomial preconditioner for parallel and GPU computing, further discussing how polynomial preconditioning can become useful to real-word applications.

 

 

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Subscribe to