Mon, 21 Feb 2022
15:30
L5

Trisected 4-manifolds and link surgery

Abigail Thompson
Abstract

Gay and Kirby formulated a new way to decompose a (closed, orientable) 4-manifold M, called a trisection.    I’ll describe how to translate from a classical framed link diagram for M to a trisection diagram.   The links so obtained lie on Heegaard surfaces in the 3-sphere,  and have surgeries yielding some number of copies of S^1XS^2.   We can describe families of “elementary" links which have such surgeries, and one can ask whether all links with few components having such surgeries lie in these families.  The answer is almost certainly no.   We nevertheless give a small piece of evidence in favor of a positive answer for a special family of 2-component links.    This is joint work with Rob Kirby.  Gay and Kirby formulated a new way to decompose a (closed, orientable) 4-manifold M, called a trisection.    I’ll describe how to translate from a classical framed link diagram for M to a trisection diagram.   The links so obtained lie on Heegaard surfaces in the 3-sphere,  and have surgeries yielding some number of copies of S^1XS^2.   We can describe families of “elementary" links which have such surgeries, and one can ask whether all links with few components having such surgeries lie in these families.  The answer is almost certainly no.   We nevertheless give a small piece of evidence in favor of a positive answer for a special family of 2-component links.    This is joint work with Rob Kirby.  

Mon, 14 Feb 2022
15:30
L5

Rigidity of minimal Lagrangian diffeomorphisms between spherical cone surfaces

Andrea Seppi
(University of Grenoble-Alpes)
Abstract

Minimal Lagrangian maps play an important role in Teichmüller theory, with important existence and uniqueness results for hyperbolic surfaces obtained by Labourie, Schoen, Bonsante-Schlenker, Toulisse and others. In positive curvature, it is thus natural to ask whether one can find minimal Lagrangian diffeomorphisms between two spherical surfaces with cone points. In this talk we will show that the answer is negative, unless the two surfaces are isometric. As an application, we obtain a generalization of Liebmann’s theorem for branched immersions of constant curvature in Euclidean space. This is joint work with Christian El Emam.

 

Mon, 07 Feb 2022
15:30
C3

Free-by-cyclic groups and their automorphisms

Naomi Andrew
(Southampton University)
Abstract

Free-by-cyclic groups are easy to define – all you need is an automorphism of F_n. Their properties (for example hyperbolicity, or relative hyperbolicity) depend on this defining automorphism, but not always transparently. I will introduce these groups and some of their properties, and connect some to properties of the defining automorphism. I'll then discuss some ideas and techniques we can use to understand their automorphisms, including finding useful actions on trees and relationships with certain subgroups of Out(F_n). (This is joint work with Armando Martino.)

Mon, 31 Jan 2022
15:30
Virtual

Localization and decomposition

Rufus Willett
(Hawaii)
Abstract

Let X be a closed Riemannian manifold, and represent the algebra C(X) of continuous functions on X on the Hilbert space L^2(X) by multiplication.  Inspired by the heat kernel proof of the Atiyah-Singer index theorem, I'll explain how to describe K-homology (i.e. the dual theory to Atiyah-Hirzebruch K-theory) in terms of parametrized families of operators on L^2(X) that get more and more 'local' in X as time tends to infinity.

I'll then switch perspectives from C(X) -- the prototypical example of a commutative C*-algebra -- to noncommutative C*-algebras coming from discrete groups, and explain how the underlying large-scale geometry of the groups can give rise to approximate 'decompositions' of the C*-algebras.  I'll then explain how to use these decompositions and localization in the sense above to compute K-homology, and the connection to some conjectures in topology, geometry, and C*-algebra theory.

Mon, 24 Jan 2022
15:30
Virtual

Deformations of ordinary Calabi-Yau varieties

Lukas Brantner
(Oxford)
Abstract

Over the complex numbers, the Bomolgorov-Tian-Todorev theorem asserts that Calabi-Yau varieties have unobstructed deformations, so any n^{th} order deformation extends to higher order.  We prove an analogue of this statement for the nicest kind of Calabi-Yau varieties in characteristic p, namely ordinary ones, using derived algebraic geometry. In fact, we produce canonical lifts to characteristic zero, thereby generalising results of Serre-Tate, Deligne-Nygaard, Ward, and Achinger-Zdanowic. This is joint work with Taelman.

Thu, 17 Feb 2022
14:00
Virtual

K-Spectral Sets

Anne Greenbaum
(University of Washington)
Abstract

Let $A$ be an $n$ by $n$ matrix or a bounded linear operator on a complex Hilbert space $(H, \langle \cdot , \cdot \rangle , \| \cdot \|)$. A closed set $\Omega \subset \mathbb{C}$ is a $K$-spectral set for $A$ if the spectrum of $A$ is contained in $\Omega$ and if, for all rational functions $f$ bounded in $\Omega$, the following inequality holds:
\[\| f(A) \| \leq K \| f \|_{\Omega} ,\]
where $\| \cdot \|$ on the left denotes the norm in $H$ and $\| \cdot \|_{\Omega}$ on the right denotes the $\infty$-norm on $\Omega$. A simple way to obtain a $K$ value for a given set $\Omega$ is to use the Cauchy integral formula and replace the norm of the integral by the integral of the resolvent norm:
\[f(A) = \frac{1}{2 \pi i} \int_{\partial \Omega} ( \zeta I - A )^{-1}
f( \zeta )\,d \zeta \Rightarrow
\| f(A) \| \leq \frac{1}{2 \pi} \left( \int_{\partial \Omega}
\| ( \zeta I - A )^{-1} \|~| d \zeta | \right) \| f \|_{\Omega} .\]
Thus one can always take
\[K = \frac{1}{2 \pi} \int_{\partial \Omega} \| ( \zeta I - A )^{-1} \| | d \zeta | .\]
In M. Crouzeix and A. Greenbaum, Spectral sets: numerical range and beyond, SIAM J. Matrix Anal. Appl., 40 (2019), pp. 1087-1101, different bounds on $K$ were derived.  I will show how these compare to that from the Cauchy integral formula for a variety of applications.  In case $A$ is a matrix and $\Omega$ is simply connected, we can numerically compute what we believe to be the optimal value for $K$ (and, at least, is a lower bound on $K$).  I will show how these values compare with the proven bounds as well.

(joint with  Michel Crouzeix and Natalie Wellen)
 

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Thu, 10 Feb 2022
14:00
Virtual

Linear and Sublinear Time Spectral Density Estimation

Chris Musco
(New York University)
Abstract

I will discuss new work on practically popular algorithms, including the kernel polynomial method (KPM) and moment matching method, for approximating the spectral density (eigenvalue distribution) of an n x n symmetric matrix A. We will see that natural variants of these algorithms achieve strong worst-case approximation guarantees: they can approximate any spectral density to epsilon accuracy in the Wasserstein-1 distance with roughly O(1/epsilon) matrix-vector multiplications with A. Moreover, we will show that the methods are robust to *in accuracy* in these matrix-vector multiplications, which allows them to be combined with any approximation multiplication algorithm. As an application, we develop a randomized sublinear time algorithm for approximating the spectral density of a normalized graph adjacency or Laplacian matrices. The talk will cover the main tools used in our work, which include random importance sampling methods and stability results for computing orthogonal polynomials via three-term recurrence relations.

---

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact @email.

Sally, PA to the Head of Department, has the hardest of mathematical tasks in Oxford Mathematics, namely the herding of mathematicians. She also asks the toughest question of the year:

"Are we doing a Christmas card this year?"

Because, of course, Sally doesn't mean "are we"; no, she means "what are we", as in "what are we going to do for a Christmas card this year?"

Interplay between single particle and collective excitation in 49V
Bisoi, A Sapkota, Y Adhikari, A Gupta, A Das, A Ghosh, H Rahaman, R Sarkar, S Pramanik, D Das, S Sharma, S Ray, S Dar, S Nandi, S Bhattacharya, S Bhattacharjee, T Mukherjee, G Bhattacharyya, S Samanta, S Chatterjee, S Raut, R Ghugre, S Journal of Physics Conference Series volume 1643 issue 1 012114 (01 Dec 2020)
Subscribe to