PROMYS Europe Connect 2021 saw a group of enthusiastic and high-achieving young mathematicians gather (online) in July and August for a four-week intensive summer programme designed to give them the experience of thinking deeply about mathematics in a community of similarly mathematically excited students and staff. In other circumstances, PROMYS Europe is a six-week residential programme in Oxford, organised by a partnership of PROMYS (Boston), Wadham College and the Mathematical Institute at the University of Oxford, and the Clay Mathematics Institute.

Thu, 02 Dec 2021

11:30 - 12:45
C2

Existential rank and essential dimension of definable sets

Philip Dittmann
(TU Dresden)
Abstract

Several natural measures of complexity can be attached to an
existentially definable ("diophantine") subset of a field. One of these
is the minimal number of existential quantifiers required to define it,
while others are of a more geometric nature. I shall define these
measures and discuss interesting interactions and behaviours, some of
which depend on properties of the field (e.g. imperfection and
ampleness). We shall see for instance that the set of n-tuples of field
elements consisting of n squares is usually definable with a single
quantifier, but not always. I will also discuss connections with
Hilbert's 10th Problem and a number of open questions.
This is joint work with Nicolas Daans and Arno Fehm.

Mon, 21 Feb 2022
14:15
L5

Anti-self-dual instantons and codimension-1 collapse

Lorenzo Foscolo
(University College London)
Further Information

The talk will be both online (Teams) and in person (L5)

Abstract

We study the behaviour of anti-self-dual instantons on $\mathbb{R}^3 \times S^1$ (also known as calorons) under codimension-1 collapse, i.e. when the circle factor shrinks to zero length. In this limit, the instanton equation reduces to the well-known Bogomolny equation of magnetic monopoles on $\mathbb{R}^3 $. However, inspired by work of Kraan and van Baal in the mathematical physics literature, we show how $SU(2)$ instantons can be realised as superpositions of monopoles and "rotated monopoles" glued into a singular background abelian configuration consisting of Dirac monopoles of positive and negative charges. I will also discuss generalisations of the construction to calorons with arbitrary structure group and potential applications to the hyperkähler geometry of moduli spaces of calorons. This is joint work with Calum Ross.

Mon, 15 Nov 2021

16:00 - 17:00

Measuring association with Wasserstein distances

JOHANNES C W WIESEL
(Columbia University (New York))
Abstract

 

Title: Measuring association with Wasserstein distances

Abstract: Let π ∈ Π(μ, ν) be a coupling between two probability measures μ and ν on a Polish space. In this talk we propose and study a class of nonparametric measures of association between μ and ν, which we call Wasserstein correlation coefficients. These coefficients are based on the Wasserstein distance between ν and the disintegration of π with respect to the first coordinate. We also establish basic statistical properties of this new class of measures: we develop a statistical theory for strongly consistent estimators and determine their convergence rate in the case of compactly supported measures μ and ν. Throughout our analysis we make use of the so-called adapted/bicausal Wasserstein distance, in particular we rely on results established in [Backhoff, Bartl, Beiglböck, Wiesel. Estimating processes in adapted Wasserstein distance. 2020]. Our approach applies to probability laws on general Polish spaces.

Wed, 17 Nov 2021

14:00 - 15:00
L5

Symplectic duality, 3d mirror symmetry, and the Coulomb branch construction of Braverman-Finkelberg-Nakajima

Dylan Butson
Abstract

I'll explain 'symplectic duality', a surprising relationship between certain pairs of algebraic symplectic manifolds, under which Hamiltonian automorphisms of one are identified with Poisson deformations of the other, and which is ultimately characterized by a Koszul-type equivalence between categories of modules over their filtered quantizations. I'll outline why such relationships are expected from physics in terms of three dimensional mirror symmetry, and rediscover the Coulomb branch construction of Braverman-Finkelberg-Nakajima from this perspective. We'll see that this explicitly constructs the symplectic dual of any variety which is presented as the symplectic reduction of a vector space by a reductive group.
 

Mon, 15 Nov 2021

16:00 - 17:00
C1

Polynomial Pell equation

Nikoleta Kalaydzhieva
Abstract

In a world of polynomial Pell’s equations, where the integers are replaced by polynomials with complex coefficients, and its smallest solution is used to generate all other solutions $(u_{n},v_{n})$, $n\in\mathbb{Z}$. One junior number theory group will embark on a journey in search of the properties of the factors of $v_{n}(t)$. There will be Galois extensions, there will be estimations and of course there will be loglogs.

Thu, 02 Dec 2021

14:00 - 15:30
L6

Toric Geometry

Andrea Boido
((Oxford University))
Further Information

Junior strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Thu, 25 Nov 2021

14:00 - 15:30
L3

CFT at finite temperature

Enrico Marchetto
((Oxford University))
Further Information

Junior strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Fri, 12 Nov 2021

15:00 - 16:00
Virtual

Stable ranks for data analysis

Professor Martina Scolamiero
(KTH Royal Institute of Technology)
Abstract

Hierarchical stabilisation, allows us to define topological invariants for data starting from metrics to compare persistence modules. In this talk I will highlight the variety of metrics that can be constructed in an axiomatic way, via so called Noise Systems. The focus will then be on one invariant obtained through hierarchical stabilisation, the Stable Rank, which the TDA group at KTH has been studying in the last years. In particular I will address the problem of using this invariant on noisy and heterogeneous data. Lastly, I will illustrate the use of stable ranks on real data within a project on microglia morphology description, in collaboration with S. Siegert’s group, K. Hess and L. Kanari. 

Mon, 22 Nov 2021

16:00 - 17:00
L3

Gibbs measures in infinite dimensions - Some new results on a classical topic

HENDRIK WEBER
(University of Bath)
Abstract

Gibbs measures on spaces of functions or distributions play an important role in various contexts in mathematical physics.  They can, for example, be viewed as continuous counterparts of classical spin models such as the Ising model, they are an important stepping stone in the rigorous construction of Quantum Field Theories, and they are invariant under the 
flow of certain dispersive PDEs, permitting to develop a solution theory with random initial data, well below the deterministic regularity threshold. 

These measures have been constructed and studied, at least since the 60s, but over the last few years there has been renewed interest, partially due to new methods in stochastic analysis, including Hairer’s theory of regularity structures and Gubinelli-Imkeller-Perkowski’s theory of paracontrolled distributions. 

In this talk I will present two independent but complementary results that can be obtained with these new techniques. I will first show how to obtain estimates on samples from of the Euclidean $\phi^4_3$ measure, based on SPDE methods. In the second part, I will discuss a method to show the emergence of phase transitions in the $\phi^4_3$ theory.


 

Subscribe to