16:00
Fixed Points of the Berezin Transform on Fock-Type Spaces
Abstract
We study the fixed points of the Berezin transform on the Fock-type spaces F^{2}_{m} with the weight e^{-|z|^{m}}, m > 0. It is known that the Berezin transform is well-defined on the polynomials in z and \bar{z}. In this talk from Ghazaleh Asghari from Reading University, we focus on the polynomial fixed points and we show that these polynomials must be harmonic, except possibly for countably many m \in (0,\infty). We also show that, in some particular cases, the fixed point polynomials are harmonic for all m.
16:00
Cuntz-Pimsner algebras of homeomorphisms twisted by vector bundles
Abstract
In this talk, Aaron Kettner, Institute of Mathematics, Czech Academy of Sciences, will show how to construct a C*-correspondence from a vector bundle together with a (partial) homeomorphism on the bundle's base space. The associated Cuntz-Pimsner algebras provide a class of examples that is both tractable and potentially quite large. Under reasonable assumptions, these algebras are classifiable in the sense of the Elliott program. If time permits, Aaron will sketch some K-theory calculations, which are work in progress.