11:45
Absolute Model Companionship, the AMC-spectrum of set theory, and the continuum problem
Abstract
We introduce a classification tool for mathematical theories based on Robinson's notion of model companionship; roughly the idea is to attach to a mathematical theory $T$ those signatures $L$ such that $T$ as axiomatized in $L$ admits a model companion. We also introduce a slight strengthening of model companionship (absolute model companionship - AMC) which characterize those model companionable $L$-theories $T$ whose model companion is axiomatized by the $\Pi_2$-sentences for $L$ which are consistent with the universal theory of any $L$-model of $T$.
We use the above to analyze set theory, and we show that the above classification tools can be used to extract (surprising?) information on the continuum problem.
12:00
A Mathematical Study of Hawking Radiation for Reissner Nordstrom black holes
Abstract
In the first part of this talk, we will (briefly) derive the original calculation by Hawking in 1974 to determine the radiation given off by a black hole, giving the result in the form of an integral of a classical solution to the linear wave equation.
In the second part of the talk, we will take this integral as a starting point, and rigorously calculate the radiation given off by a forming spherically symmetric, charged black hole. We will then show that for late times in its formation, the radiation given off approaches the limit predicted by Hawking, including the extremal case. We will also calculate a bound on the rate at which this limit is approached.