Prospects for Cherenkov Telescope Array observations of the young supernova remnant RX J1713.7−3946
Acero, F Aloisio, R Amans, J Cotter, G De Franco, A Sarkar, S Watson, J Et al., E Astrophysical Journal volume 840 issue 2 (10 May 2017)
High redshift radio galaxies and divergence from the CMB dipole
Colin, J Mohayaee, R Rameez, M Sarkar, S Monthly Notices of the Royal Astronomical Society volume 471 issue 1 1045-1055 (29 Jun 2017)
Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube
Albert, A André, M Anghinolfi, M Sarkar, S Physical Review D volume 96 issue 2 022005 (01 Jul 2017)
Mon, 10 Jul 2017
14:30

Restrictions on the size of some kinds of locally compact spaces

Peter Nyikos
(South Carolina)
Abstract

The talk will focus on five items:

Theorem 1. It is ZFC-independent whether every locally compact, $\omega_1$-compact space of cardinality $\aleph_1$  is the union of countably many countably compact spaces.

Problem 1. Is it consistent that every locally compact, $\omega_1$-compact space of cardinality $\aleph_2$  is the union of countably many countably compact spaces?

[`$\omega_1$-compact' means that every closed discrete subspace is countable. This is obviously implied by being the union of countably many countably compact spaces, but the converse is not true.]

Problem 2. Is ZFC enough to imply that there is  a normal, locally countable, countably compact space of cardinality greater than $\aleph_1$?

Problem 3. Is it consistent that there exists a normal, locally countable, countably compact space of cardinality greater than $\aleph_2$?

The spaces involved in Problem 2 and Problem 3 are automatically locally compact, because by "space" I mean "Hausdorff space" and so regularity is already enough to give every point a countable countably compact (hence compact) neighborhood.

Theorem 2. The axiom $\square_{\aleph_1}$ implies that there is a normal, locally countable, countably compact space of cardinality $\aleph_2$.

This may be the first application of $\square_{\aleph_1}$ to construct a topological space whose existence in ZFC is unknown.

Tue, 13 Jun 2017

12:00 - 13:15
L4

Dark Matter Decay?  Possible Observational Tests—According to CCC

Roger Penrose
Abstract

In the cosmological scheme of conformal cyclic cosmology (CCC), the equations governing the crossover form each aeon to the next demand the creation of a dominant new scalar material that is postulated to be dark matter. In order that this material does not build up from aeon to aeon, it is taken to decay away completely over the history of the aeon. The dark matter particles (erebons) would be expected to behave as essentially classical particles of around a Planck mass, interacting only gravitationally, and their decay would be mainly responsible for the (~scale invariant)

temperature fluctuations in the CMB of the succeeding aeon. In our own aeon, erebon decay ought to be detectable as impulsive events observable by gravitational wave detectors.

Thu, 01 Jun 2017
17:00
L5

Markovian Solutions to Scalar Conservation Laws

Fraydoun Rezakhanlou
(UC Berkeley)
Abstract

According to a classical result of Bertoin (1998), if the initial data for Burgers equation is a Levy Process with no positive jump, then the same is true at later times, and there is an explicit equation for the evolution of the associated Levy measures. In 2010, Menon and Srinivasan published a conjecture for the statistical structure of solutions to scalar conservation laws with certain Markov initial conditions, proposing a kinetic equation that should suffice to describe the solution as a stochastic process in x with t fixed (or in t with x fixed). In a joint work with Dave Kaspar, we have been able to establish this conjecture. Our argument uses a particle system representation of solutions.

 

The human body comprises an incredibly large number of cells. Estimates place the number somewhere in the region of 70 trillion, and that’s even before taking into account the microbes and bacteria that live in and around the body. Yet inside each cell, a myriad of complex processes occur to conceive and sustain these micro-organisms.

From Bach’s Goldberg Variations to Schoenberg’s Twelve-tone rows, composers have exploited symmetry to create variations on a theme. But symmetry is also embedded in the very way instruments make sound. Marcus du Sautoy shares his passion for music, mathematics and their enduring and surprising relationship. The lecture culminates in a reconstruction of nineteenth-century scientist Ernst Chladni's exhibition that famously toured the courts of Europe to reveal extraordinary symmetrical shapes in the vibrations of a metal plate. 

Subscribe to