Thu, 04 May 2017

16:00 - 17:30
L4

Short-time near-the-money skew in rough fractional stochastic volatility models

Blanka Horvath
(Imperial)
Abstract

We consider rough stochastic volatility models where the driving noise of volatility has fractional scaling, in the “rough” regime of Hurst pa- rameter H < 1/2. This regime recently attracted a lot of attention both from the statistical and option pricing point of view. With focus on the latter, we sharpen the large deviation results of Forde-Zhang (2017) in a way that allows us to zoom-in around the money while maintaining full analytical tractability. More precisely, this amounts to proving higher order moderate deviation es- timates, only recently introduced in the option pricing context. This in turn allows us to push the applicability range of known at-the-money skew approxi- mation formulae from CLT type log-moneyness deviations of order t1/2 (recent works of Alo`s, Le ́on & Vives and Fukasawa) to the wider moderate deviations regime.

This is work in collaboration with C. Bayer, P. Friz, A. Gulsashvili and B. Stemper

Thu, 27 Apr 2017

16:00 - 17:30
L4

On numerical approximation algorithms for high-dimensional nonlinear PDEs, SDEs and FBSDEs

Arnulf Jentzen
(ETH Zuerich)
Abstract

In this lecture I intend to review a few selected recent results on numerical approximations for high-dimensional nonlinear parabolic partial differential equations (PDEs), nonlinear stochastic ordinary differential equations (SDEs), and high-dimensional nonlinear forward-backward stochastic ordinary differential equations (FBSDEs). Such equations are key ingredients in a number of pricing models that are day after day used in the financial engineering industry to estimate prices of financial derivatives. The lecture includes content on lower and upper error bounds, on strong and weak convergence rates, on Cox-Ingersoll-Ross (CIR) processes, on the Heston model, as well as on nonlinear pricing models for financial derivatives. We illustrate our results by several numerical simulations and we also calibrate some of the considered derivative pricing models to real exchange market prices of financial derivatives on the stocks in the American Standard & Poor's 500 (S&P 500) stock market index.

Thu, 02 Mar 2017
11:00
C5

A New Technique for Definability in Function Fields.

Philip Dittmann
(Oxford)
Abstract


Generalising previous definability results in global fields using
quaternion algebras, I will present a technique for first-order
definitions in finite extensions of Q(t). Applications include partial
answers to Pop's question on Isomorphism versus Elementary Equivalence,
and some results on Anscombe's and Fehm's notion of embedded residue.

Wed, 08 Mar 2017

11:00 - 12:30
N3.12

Varieties of groups

Giles Gardem
(University of Oxford)
Abstract

A variety of groups is an equationally defined class of groups, namely the class of groups in which each of a set of "laws" (or "identical relations") holds. Examples include the abelian groups (defined by the law $xy = yx$), the groups of exponent dividing $d$ (defined by the law $x^d$), the nilpotent groups of class at most some fixed integer, and the solvable groups of derived length at most some fixed integer. This talk will give an introduction to varieties of groups, and then conclude with recent work on determining for certain varieties whether, for fixed coprime $m$ and $n$, a group $G$ is in the variety if and only if the power subgroups $G^m$ and $G^n$ (generated by the $m$-th and $n$-th powers) are in the variety.

Wed, 01 Mar 2017

11:00 - 12:30
N3.12

Kneser's Conjecture on Free Products

Gareth Wilkes
(University of Oxford)
Abstract

In this talk I will describe another strong link between the behaviour of a 3-manifold and the behaviour of its fundamental group- specifically the theorem that the group splits as a free product if and only if the 3-manifold may be divided into two parts using a 2-sphere inducing this splitting. This theorem is for some reason known as Kneser's conjecture despite having been proved half a century ago by Stallings.

First search for dark matter annihilations in the Earth with the IceCube detector
Aartsen, M Abraham, K Ackermann, M Sarkar, S Et al., E European Physical Journal C volume 2017 issue 77 (01 Feb 2017)
Search for sterile neutrino mixing using three years of IceCube DeepCore data
Ackermann, M Adams, J Sarkar, S Physical Review D volume 95 issue 11 112002 (01 Jun 2017)
Extending the Search for Muon Neutrinos Coincident with Gamma-Ray Bursts in IceCube Data
Ackermann, M Adams, J Sarkar, S Astrophysical Journal volume 843 issue 2 1-13 (11 Jul 2017)
Multiwavelength follow-up of a rare IceCube neutrino multiplet
Aartsen, M Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Al Samarai, I Altmann, D Andeen, K Anderson, T Ansseau, I Anton, G Archinger, M Argüelles, C Auffenberg, J Axani, S Bai, X Barwick, S Baum, V Bay, R Beatty, J Tjus, J Becker, K Benzvi, S Berley, D Bernardini, E Bernhard, A Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Bohm, C Börner, M Bos, F Bose, D Böser, S Botner, O Braun, J Brayeur, L Bretz, H Bron, S Burgman, A Carver, T Casier, M Cheung, E Chirkin, D Christov, A Clark, K Classen, L Coenders, S Collin, G Conrad, J Cowen, D Cross, R Day, M De André, J De Clercq, C Del Pino Rosendo, E Dembinski, H De Ridder, S Desiati, P De Vries, K De Wasseige, G De With, M Deyoung, T Di Lorenzo, V Dujmovic, H Dumm, J Dunkman, M Eberhardt, B Ehrhardt, T Eichmann, B Eller, P Euler, S Evenson, P Fahey, S Fazely, A Feintzeig, J Felde, J Filimonov, K Finley, C Flis, S Fösig, C Franckowiak, A Friedman, E Fuchs, T Gaisser, T Gallagher, J Gerhardt, L Ghorbani, K Giang, W Gladstone, L Glauch, T Glüsenkamp, T Goldschmidt, A Gonzalez, J Grant, D Griffith, Z Haack, C Astronomy and Astrophysics volume 607 (01 Nov 2017)
Tue, 09 May 2017

12:00 - 13:15
L4

Duality of Wilson loop form factors

Emery Sokatchev
(Cern)
Abstract

We find a new duality  for form factors of lightlike Wilson loops
in planar N=4 super-Yang-Mills theory. The duality maps a form factor
involving a lightlike polygonal super-Wilson loop together with external
on-shell states, to the same type of object  but with the edges of the
Wilson loop and the external states swapping roles.  This relation can
essentially be seen graphically in Lorentz harmonic chiral (LHC) superspace
where it is equivalent to planar graph duality.

Subscribe to