A new construction of Nori motives (by Caramello and Barbieri-Viale, Joyal and Cartier)
Abstract
to come
to come
Oxford Mathematics Public Lectures
The Law of the Few - Sanjeev Goyal
The study of networks offers a fruitful approach to understanding human behaviour. Sanjeev Goyal is one of its pioneers. In this lecture Sanjeev presents a puzzle:
In social communities, the vast majority of individuals get their information from a very small subset of the group – the influencers, connectors, and opinion leaders. But empirical research suggests that there are only minor differences between the influencers and the others. Using mathematical modelling of individual activity and networking and experiments with human subjects, Sanjeev helps explain the puzzle and the economic trade-offs it contains.
Professor Sanjeev Goyal FBA is the Chair of the Economics Faculty at the University of Cambridge and was the founding Director of the Cambridge-INET Institute.
28 June 2017, 5.00-6.00pm, Lecture Theatre 1, Mathematical Institute Oxford.
Please email @email to register
From the tobacco companies in the fifties to the arguments of the Brexit campaign, Economist and BBC Radio 4 Presenter Tim Harford takes us on a tour of truths, facts and the weapon that is doubt. Surely fact-checking websites and rational thinking are the best weapons to convince people of the truth? Or is in fact the truth simply not good enough. Do we have time or any inclination to hear it? Maybe we need to start with something simpler. Perhaps arousing people's curiosity might be just as important.
Given two $k$-graphs $H$ and $F$, a perfect $F$-packing in $H$ is a collection of vertex-disjoint copies of $F$ in $H$ which together cover all the vertices in $H$. In the case when $F$ is a single edge, a perfect $F$-packing is simply a perfect matching. For a given fixed $F$, it is generally the case that the decision problem whether an $n$-vertex $k$-graph $H$ contains a perfect $F$-packing is NP-complete.
In this talk we describe a general tool which can be used to determine classes of (hyper)graphs for which the corresponding decision problem for perfect $F$-packings is polynomial time solvable. We then give applications of this tool. For example, we give a minimum $\ell$-degree condition for which it is polynomial time solvable to determine whether a $k$-graph satisfying this condition has a perfect matching (partially resolving a conjecture of Keevash, Knox and Mycroft). We also answer a question of Yuster concerning perfect $F$-packings in graphs.
This is joint work with Jie Han (Sao Paulo).
Groups which are "attached" to theories of fields, appearing in models of the theory
as the automorphism groups of intermediate fields fixing an elementary submodel are called geometrically represented.
We will discuss the concept ``geometric representation" in the case of pseudo finite fields. Then will show that any group which is geometrically represented in a complete theory of a pseudo-finite field must be abelian.
This result also generalizes to bounded PAC fields. This is joint work with Zoe Chatzidakis.
We give a description of the spectra of $\hat{\mathbb Z}$ and of the
finite adeles using ultraproducts. In describing the prime ideals and the
localizations, ultrapowers of the group $\mathbb Z$ and ultraproducts of
rings of $p$-adic integers are used.
Manifolds with corners are similar to manifolds, yet are locally modelled on subsets $[0,\infty)^k \times R^{n-k}$. I will discuss some of the theory of these objects, as well as introducing $C^\infty$-rings. This will explain the background to my current research in $C^\infty$-Algebraic Geometry. Time permitting, I will briefly discuss my current research on $C^\infty$-schemes with corners and motivation of this research.
Hyperbolic groups were introduced by Gromov and generalize the fundamental groups of closed hyperbolic manifolds. Since a closed hyperbolic manifold is aspherical, it is a classifying space for its fundamental group, and a hyperbolic group will also admit a compact classifying space in the torsion-free case. After an introduction to this and other topological finiteness properties of hyperbolic groups and their subgroups, we will meet a construction of R. Kropholler, building on work of Brady and Lodha. The construction gives an infinite family of hyperbolic groups with finitely-presented subgroups which are non-hyperbolic by virtue of their finiteness properties. We conclude with progress towards determining minimal examples of the "sizeable" graphs which are needed as input to the construction.
Consider a family of uniformly bounded $W^{2,p}$ isometric immersions of an $n$-dimensional (semi-) Riemannian manifold into (resp., semi-) Euclidean spaces. Are the weak limits still isometric immersions?
We answer the question in the affirmative for $p>n$ in the Riemannian case, by exploiting the div-curl structure of the Gauss-Codazzi-Ricci equations, which describe the curvature flatness of the isometric immersions. Along the way a generalised div-curl lemma in Banach spaces is established. Moreover, the endpoint case $p=n=2$ is settled.
In the semi-Riemannian case we reduce the problem to the weak continuity of H. Cartan's structural equations in $W^{1,p}_{\rm loc}$, which is proved by a generalised compensated compactness theorem relating the weak continuity of quadratic forms to the principal symbols of differential constraints. Again for $p>n$ we obtain the weak rigidity. The case of degenerate hypersurfaces are also discussed, as well as connections to PDEs in fluid dynamics.