Mon, 29 Oct 2018
12:45
L3

Infrared enhancement of supersymmetry in four dimensions

Simone Giacomelli
(Oxford)
Abstract

 In this seminar I will discuss a recently-found class of RG flows in four dimensions exhibiting enhancement of supersymmetry in the infrared, which provides a lagrangian description of several strongly-coupled N=2 SCFTs. The procedure involves starting from a N=2 SCFT, coupling a chiral multiplet in the adjoint representation of the global symmetry to the moment map of the SCFT and turning on a nilpotent expectation value for this chiral. We show that, combining considerations based on 't Hooft anomaly matching and basic results about the N=2 superconformal algebra, it is possible to understand in detail the mechanism underlying this phenomenon and formulate a simple criterion for supersymmetry enhancement. 

Details on the Fridays@2 and Fridays@11 programmes which run every Friday in term time L1, followed by tea and biscuits in the South Mezz.
Tue, 30 Oct 2018

14:30 - 15:00
L5

Optimal complexity Navier-Stokes simulations in the ball

Nicolas Boulle
(Oxford)
Abstract

In the first part of this talk, I will present an extension of Chebfun, called Ballfun, for computing with functions and vectors in the unit ball. I will then describe an algorithm for solving the incompressible Navier-Stokes equations in the ball. Contrary to projection methods, we use the poloidal-toroidal decomposition to decouple the PDEs and solve scalars equations. The solver has an optimal complexity (up to polylogarithmic terms) in terms of the degrees of freedom required to represent the solution.

Tue, 29 Jan 2019

12:00 - 13:15
L4

Using Bose-Einstein condensates to explore scales where quantum physics and general relativity overlap

Ivette Fuentes
(University of Nottingham)
Abstract

Progress in developing a consistent theory that describes physical phenomena
at scales where quantum and general relativistic effects are large is
hindered by the lack of experiments. In this talk, we present a proposal
that would overcome this experimental obstacle by using a Bose-Einstein
condensate (BEC) to test for possible conflicts between quantum theory and
general relativity. Recent developments in large BEC systems allows us to
verify if gravitationally-induced wave function collapse occurs at the
timescales predicted by Roger Penrose. BECs with high particle numbers
(N>10^9) can also be used to demonstrate quantum field theory in curved
spacetime by observing how changes in the spacetime affect the phononic
quantum field of a BEC. These effects will enable the development of a new
generation of instruments that will be able to probe scales where new
physics might emerge, with applications including gravitational wave
detectors, gravimeters, gradiometers and dark energy probes.

Mon, 22 Oct 2018
12:45
L3

Higgs bundles, branes, and application

Laura Schaposnik
(Chicago)
Abstract

Higgs bundles are pairs of holomorphic vector bundles and holomorphic 1-forms taking values in the endomorphisms of the bundle. Their moduli spaces carry a natural Hyperkahler structure, through which one can study Lagrangian subspaces (A-branes) or holomorphic subspaces (B-branes). Notably, these A and B-branes have gained significant attention in string theory. After introducing Higgs bundles and the associated Hitchin fibration, we shall look at  natural constructions of families of different types of branes, and relate these spaces to the study of 3-manifolds, surface group representations and mirror symmetry.

Wed, 14 Nov 2018
16:30
C1

Small polycyclic groups

David Hume
(Oxford University)
Abstract

Polycyclic groups either have polynomial growth, in which case they are virtually nilpotent, or exponential growth. I will give two interesting examples of "small" polycyclic groups which are extensions of $\mathbb{R}^2$ and the Heisenberg group by the integers, and attempt to justify the claim that they are small by sketching an argument that every exponential growth polycyclic group contains one of these.

Wed, 07 Nov 2018
16:00
C1

Boundaries of Hyperbolic Groups

Sam Colvin
(Bristol University)
Abstract

You’re an amateur investigator hired to uncover the mysterious goings on of a dark cult. They call themselves Geometric Group Theorists and they’re under suspicion of pushing humanity’s knowledge too far. You’ve tracked them down to their supposed headquarters. Foolishly, you enter. Your mind writhes as you gaze unwittingly upon the Eldritch horror they’ve summoned… Group Theory! You think fast; donning the foggy glasses of quasi-isometry, you prevent your mind shattering from the unfathomable complexity of The Beast. You spy a weak spot and the phrase `Gromov Hyperbolicity’ flashes across your mind. You peer deeper, further, forever… only to find yourself somewhere rather familiar, strange, but familiar… no, self-similar! You’ve fought with fractals before, this weirdness can be tamed! Your insight is sufficient and The Beast retreats for now.
In other words, given an infinite group, we associate to it an infinite graph, called a Cayley graph, which gives us a notion of the ‘geometry’ of a group. Through this we can ask what kind of groups have hyperbolic geometry, or at least an approximation of it called Gromov hyperbolicity. Hyperbolic groups are quite a nice class of groups but a large one, so we introduce the Gromov boundary of a hyperbolic group and explain how it can be used to distinguish groups in this class.

Wed, 24 Oct 2018
16:00
C1

Finding fibres for free factors

Benjamin Brück
(Bielefeld University)
Abstract

"Fibre theorems" in the style of Quillen's fibre lemma are versatile tools used to study the topology of partially ordered sets. In this talk, I will formulate two of them and explain how these can be used to determine the homotopy type of the complex of (conjugacy classes of) free factors of a free group.
The latter is joint work with Radhika Gupta (see https://arxiv.org/abs/1810.09380).

Subscribe to